

http://amresearchreview.com/index.php/Journal/about

Page 92

DOI: Availability

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

Faisal Haroon
1

ONLINE ISSN: 3007-3197 | PRINT ISSN: 3007-3189

Heuristic-Based Task Scheduling in Grid Computing: A Scalable Framework

for Load Balancing, Resource Utilization, and Execution Time Reduction

Article Details A B S T R A C T

Keywords: Grid computing, task

scheduling, heuristic algorithms,

particle swarm optimization,

genetic algorithm, ant colony

optimization, resource utilization,

load balancing, makespan

reduction.

1
Faisal Haroon

IT Consultant, ,Comsats

University, Abbottabad

Campus

faisalharoon_4@yahoo.co

m

Grid computing actively changed the sphere of large-scale distributed processing,

allowing the subsequent employment of geographically distributed and

heterogeneous resources. However, efficient scheduling of tasks in such

environments is not a simple feat as it has to address issues such as dynamic

workloads, heterogeneity of resources as well as scalability. This research work

adopts a heuristic-based task scheduling framework which combines GA, ACO, and

PSO to achieve maximum performance in terms of less makespan, improved resource

utilization, load balance, and energy consumption. The framework was implemented

and evaluated using the GridSim simulation tool under different tasks of load varying

from 100 up to 500. A comparative analysis showed that, in general, heuristic

schedulers, especially PSO, were more effective than FCFS in all the tested criteria.

Other methods showed higher makespan while still producing an evenly distributed

load, PSO provided the shortest make span, the fastest resource utilization and a very

low average wait and response time. Therefore, the research adds to the existing

literature about intelligent adaptive scheduling technologies in grids through

proposing a scalable solution fitting both demands for execution efficiency and

economy. These results provide insights on the impacts of heuristic optimization on

the developments of the grid computing to be more responsive, energy efficient and

high throughput.

Introduction

GRID computing has become a promising architecture for solving large-scale computational problems using

distributed resources available across the geographical and administrative boundaries (Foster & Kesselman,

2004). It allows multiple resources of computing, storage, and services to work collectively to address

challenges, which require large-scale computing, especially in scientific and technical analysis, and

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

93

http://amresearchreview.com/index.php/Journal/about

Page 93

DOI: Availability

simulations (Buyya et al., 2009). However, one of the biggest problems in grid computing is task scheduling

which entails assigning a list of tasks to a list of resources in such a way that certain key attributes such as

makespan, resource utility, throughput and load balancing are optimized (Abawajy, 2004; Braun et al., 2001).

Grid is inherently different from other computing systems which have established infrastructure where

resources are somewhat uniform and rooted in a fixed infrastructure (Yu & Buyya, 2006). Such heterogeneity

is attributed to capacity, availability and administrative policies towards the resources in these different states.

Accordingly, static and deterministic scheduling algorithms like FCFS, Min-Min and Max-Min still do not

meet the optimal solutions as required when load variations and constraints exist within the available resources

(Xhafa & Abraham, 2010). These limitations have made the researchers look for the heuristic and

metaheuristic algorithms that give near-optimal solutions with less computational time complexity (Bharathi et

al., 2009; Abraham et al., 2000).

Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and

Simulated Annealing (SA) has shown significant promise for scheduling in grids due to its flexibility and

capability of handling multiple objectives (Nabrzyski et al., 2004; Singh & Chana, 2016). For instance, GA-

based schedulers mimic the natural phenomenon of evolution and are useful for keeping a rich gene pool,

which helps in the search for more solutions in the search space (Holland 1992, Suri & Garg 2013). Likewise,

PSO intends to mimic the social behavior of particle swarms and is recognized for its capacity to expedite

convergence to optimal scheduling decisions (Eberhart & Kennedy, 1995; Muthusamy et al., 2012). ACO,

based on the process of how ants search and select sources of food, presents a good power of exploitation by

strengthening the previously identified beneficial associations between tasks and resources (Dorigo and Di

Caro, 1999; Page and Carrera, 2006).

Apart from the efficiency of execution, load distribution and used resources are two more essential parameters

of the grid systems. The flow of activities in work can also be disrupted because some resources are

overloaded with tasks while others receive few tasks hence the system becomes inefficient (Somasundaram &

Govindarajan, 2009). Heuristic algorithms solve this problem through real-time resource state and task queues

while presenting dynamic scheduling approaches that do not easily get affected by the system (Zomaya & Teh,

2001).

In addition, the size of the grid environments is constantly expanding given its applications in scientific

computing and distributed collaborations and therefore requires scalable scheduling systems that can work at

large scales (Deelman et al., 2005; Buyya et al., 2005). Researchers have also researched compound heuristics

that integrate more than one algorithm in a bid to overcome their shortcomings; for instance, GA-PSO is a

balance between exploration and exploitation of solutions, and is more effective in mimicking complicated

power grid environments (Wang, Wu, & Wang, 2010; Garg & Sharma, 2011).

However, there are still some gaps in literature for developing the overall frameworks for integrated

methodologies which use heuristic methods and also the proposed solutions include scalability, REAL-time

adaptability, and multiple metrics goals in various types of grids. Thus, the current research seeks to bridge

this gap through developing a scalable heuristic-based task scheduling framework that uses GA, PSO, and

ACO. The framework is proposed for minimizing the overall execution time and also for providing a good

load balancing and efficient utilization of resources in the grid computing environment that is large in scale.

However, this study evaluates the proposed framework against the benchmark heuristic algorithms presented

in section 2 and standalone heuristic algorithms through simulation using GridSim and evaluates the proposed

framework under different workloads and conditions of resources. They also help in exploring viable solutions

that ought to be put in place for building schedule flexibility solutions for the real grid computing

environment.

Literature Review

This has perhaps been one of the demanding areas of research in grid computing because of the increasing

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

94

http://amresearchreview.com/index.php/Journal/about

Page 94

DOI: Availability

scale, variability and distribution of resources in a networked environment. With present day advancements

that support grid systems for high-performance scientific uses, multimedia processing as well as business

intelligence applications, there has been a demand for effective and efficient scheduling opportunities

(Venugopal et al., 2006). Given the fact that the current grid environment is characterized by dynamicity of

computational resources and the loads they can handle, the traditional stochastic task scheduling techniques

that are fixed and pre-defined are incongruous. Hence, there has been a change of trend to heuristic and

metaheuristic methodologies that have flexibility to perform nearly optimum solutions while using fewer

resources and time (Zhao et al., 2009).

Another study by Kwok and Ahmad (1999) involves a list-scheduling heuristics for heterogeneous computing

systems and underlined the importance of heuristic decisions in minimizing makespan. They were first to

define the foundations of being able to look at adaptable scheduling when dealing with non-deterministic

schedules. Similarly, Dogan and Özgüner (2002) presented a GA-based static scheduler for parallel task

scheduling to achieve optimal execution time with communication overhead constraint. Although their method

seemed quite effective, it had a static nature and could not adapt itself during the process which has been

rectified in most recently developed Hybrid heuristics.

Research has also been carried out on integrating AIS for scheduling with the intention of creating more

diversification and stronger resilience when compared to traditional methods of random testing. Nazeer and

Azween (2010) developed an AIS model inspired by the adaptive immune response in the human body for

distribution of resources. The simulation evidence also revealed that the designed bio-inspired method could

achieve better load distribution in the scenario of vast numbers of arriving and leaving tasks. Likewise,

Smanchat and Viriyapant (2009) proposed a Bee Colony Optimization (BCO) algorithm to enhance the

scheduling performance through distributed decision-making and solution updating.

Fuzzy logic in task scheduling is another important aspect in the area of heuristic approaches to solving the

problem. Liu, Lin, and Lee (2008) proposed a fuzzy scheduling method that permits the exploitation of

linguistic information to control changes of the state of the system. It was seen that this method improved the

throughput and efficiency of jobs performed as compared to the schedulers based on crisp-logic.

Some of the frameworks besides using rule-based systems to enhance factors, they can use heuristics to help in

getting the scalability of scheduling algorithms. For example, Bittencourt and Madeira (2011) presented a rule-

based inference engine to perform the assignment of tasks supported by static and dynamic attributes. Their

results highlighted the fact that lazy evaluation enables effective management of workloads within large grid

clusters. A randomized model that has been developed by Maheswaran and et al. (1999) does take into

consideration the problem of resource availability that is random in some systems but the model has a major

drawback of not addressing more than one performance criterion.

Modern trends in the task scheduling approaches use Machine Learning (ML) and Reinforcement Learning

(RL) models bearing improvements on heuristic algorithms. Chen et al. (2020) presented a more sophisticated

concept of a dynamic DQN-based scheduler that learns the how and when of the optimization from the system

feedback in real-time and has shown superiority to fixed time and rule based heuristics. Despite their potential

in terms of predictability, ML-based techniques present high training costs and a strong dependence on data,

which presents difficulties in implementing them in constrained grid environments, as noted by Rashid and

Raza (2018).

Also, the Ant and Swarm optimization are other approaches that have been used to enhance the flexibility of

the schedulers in environments that have high variability. Previous work done by Bakir and Gündüz (2016)

involved the development of a MACO algorithm specially designed for load balancing in grid, especially with

the modification of the update rule of pheromone through which overloaded nodes are penalized with an

enhanced intention to balance load. In the same way, Yao et al. (2017) explained the advantage of integrating

Particle Swarm Optimization (PSO) with Local Search (LS) in escaping local minima so as to achieve global

optima in large task sets.

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

95

http://amresearchreview.com/index.php/Journal/about

Page 95

DOI: Availability

It has in the recent past sparked heightened interests on heuristic-based scheduling with multi-objective

optimizations. Some of the works include the NSGA-II (Non-dominated Sorting Genetic Algorithm II)

adopted by Pandey et al., (2010) where the multiple objectives such as time, cost, and reliability were

competing. Their algorithm had good load based and energy consumption patterns which were major

considerations in the field of green computing. Similarly, Ghanbari and Othman (2012) introduce QoS

parameters as extra objectives in a multiple- objectives scheduler that adjust the scheduling strategies

according to the user’s demands.

However, the problem of scalability; which is the ability of the scheduler to perform efficiently as more

resources and networks are added to the grid, remains unresolved. For this, Duro et al. (2018) suggested a

decentralized heuristic where scheduling decisions are made at the peer nodes hence minimizing the decision-

making load. While they may present many advantages, decentralized approaches have the primary drawback

of possible lack of coordination and data synchronization.

It also presents some studies on task dependency by employing Directed Acyclic Graphs (DAG). For instance,

Topcuoglu and his research colleagues, H. Hariri and W. Wu, suggested the Heterogeneous Earliest Finish

Time (HEFT) for scheduling DAG-based workflows in 2002. Despite this, HEFT is heuristic-based, and this

makes it not very efficient specifically in real-time grid environment because its basic assumptions are static.

However, more recent heuristic based methods like the Dynamic Critical Path (DCP) try to dynamically

change the priority while the tasks are being performed to enhance real time flexibility (Kaur & Kinger, 2015).

Finally, the cloud aware grid schedulers are being developed as the mid-represented solutions of the

integration of grid systems with cloud architectures. In Lin, Liu, and Zhang (2020), authors developed a

heuristic load balancer for hybrid cloud-grid systems and proved that integration of cloud can help to

overcome local resource deficit, however, it also introduces new challenges in pricing and latency.

In conclusion, based on the literature, there is strong evidence regarding the applicability of heuristic-based

task scheduling in solving issues arising from dynamic environments of grid computing towards overall

optimal scheduling of resources, load balancing, and execution time. However, most previous approaches for

deep learning networks deal with either of these aspects: flexibility, speed, or scalability, but not all. This gap

explains why there is a need for an adaptive literature review system that can dynamically choose the most

applicable heuristic approaches and provide consistent performance regardless of the size of the grid

environment. Hence, the proposed framework as discussed in this study seeks to solve this problem by having

a scheduling solution that includes adaptable, scalably and load aware heuristics .

Methodology

1 . Research Design and Approach

This research work uses a quantitative method coupled with simulation to analyze the effectiveness of a

heuristic based task scheduling technique in grid computing scenarios. The approach can be designed as a

modular scheduling system with three of the most popular metaheuristic algorithms: GA, PSO, and ACO.

These algorithms were chosen because of their usefulness in solving various combinatorial optimization

problems and due to their applicability in more complex dynamic and distributed systems. The purpose of task

scheduling is to schedule the task under different grid architecture and utilization levels and compare the

simulated results in terms of Makespan, Resource utilization and Load Balance index.

2. Framework Architecture and Functionality

The proposed scheduling framework is broken down into several modules that are meant to reflect the key

characteristics of real environments in grids computing. The Task Analyzer is designed specifically to analyze

the characteristics of the incoming tasks in terms of size, anticipated time to complete and required resources.

This program performs data containing each grid node information which consists of CPU free time, memory

space, bandwidth, and the current load. When the task and resource information are gathered, the Heuristic

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

96

http://amresearchreview.com/index.php/Journal/about

Page 96

DOI: Availability

Scheduler chooses and uses GA, PSO, or ACO according to the current state of the system and the complexity

of the assigned tasks.

It is achieved by a rule-based decision making system, which considers the parameters such as convergence

rate, importance of the task, and the availability of nodes. Thus, for instance, PSO can be implemented in cases

where time to schedule the tasks is a critical factor while GA is more appropriate for situations that allow for

wider search space exploration. For each task, the Execution Manager then distributes them to the chosen

nodes such as the heuristic map generated. On the other hand, the Evaluation Module monitors overall system

performance metrics at the scheduling life cycle.

3. Implementation and Simulation Environment

In order to validate the proposed framework we designed and implemented simulations using GridSim 5.2, a

Java based Discrete Event Simulation toolkit targeted for grid and cloud computing environments. The

implementation was done in the GridSim tool due its flexibility and extensibility, in addition to its application

in grid computing. This was carried out in a multiple heterogeneous resources- CPU intensive, memory

intensive and nodes which are balanced with 10 to 50 grid sites and gave a mid to large scale distributed

system. The independent/dependent tasks ranged in number from 100 to 500, which were created randomly in

order to mimic real-life variations in the levels of difficulty and use of resources.

The following heuristic algorithm to be used where every algorithm was implemented depending on their

standard operators. In the case of GA, crossover and mutation rates were fixed at 0.6 and 0.1 respectively. To

optimize path selection for ACO, pheromone evaporation rate and heuristic desirability factor go through

certain iterations. Here, there were local and global best terms in the velocity update formula and inertia

weight was kept adaptive for continuous exploration and exploitation. These algorithms were worked out

under the same task environment so they could be done in turn to compare their performances.

4. Metrics for Evaluation

To evaluate the performance of the proposed framework, three key success factors were used. First, makespan

was defined as the sum of the time it took to complete all of the tasks in the task pool. Shorter makespan

represents better scheduling. Second, resource utilization was computed to total the active processing time

divided by total time available and by node, indicating how intensively resources were used. Lastly, load

balancing index was computed as standard deviation of load distribution of the tasks that are performed by the

nodes. Lower value implies that the load among the nodes will be more balanced, and this is essential in

avoiding overloading some nodes while others remain idle.

5. Experimental Procedure and Validation

As a part of designing the simulation, three phases were considered: initialization, execution and collection of

results. In the initialization phase within SSD, the task profiles and resource capabilities of the tasks to be

executed in the system were established and input into the system. During the execution, scheduling

algorithms bound tasks to resources as well as supervise the performance of the tasks. This was done thirty

times for each algorithm to enhance the probability of quality results and reduce the effect of variation. During

the result collection phase, the relevant data was parsed from the logs of the system. After obtaining the above

results, we performed statistics with mean comparison by standard deviation and difference calculation and

plotted data using MATLAB graphics. On the same account, in order to test the significance of the differences

between the heuristic algorithms concerning each performance measure, the t-test statistic was calculated.

Results

1. Makespan Analysis

From Table 1 and Figure 1, it is clear that there is a pronounced difference in the makespan, or total execution

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

97

http://amresearchreview.com/index.php/Journal/about

Page 97

DOI: Availability

time, based on the scheduling algorithms as the number of tasks escalates. FCFS proved to have the longest

markspan, ranging from 150 to 715 when tested for 500 numbers of tasks. However, as shown in the context,

PSO achieved the shortest makespan among task volumes when completing the tasks within only 540 seconds

on 500 tasks. Thus, GA and ACO were superior to FCFS schedules, but inferior to PSO.

Table 1 – Makespan (s)

Task

Count

FCFS GA ACO PSO

100 150 110 115 105

200 290 225 235 210

300 430 330 345 320

400 570 445 460 430

500 715 560 575 540

Figure 1 – Makespan

This clearly demonstrates how heuristic-based schedulers achieved the objective of reducing execution time.

PSO is highly flexible and can reach solutions close to the optimum of task-resource mapping in a short time,

which helps to avoid excessive idle times. GA also gives good results because of the population based search

and also crossover but is slightly slower in convergence than PSO.

2. Resource Utilization

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

98

http://amresearchreview.com/index.php/Journal/about

Page 98

DOI: Availability

Table 2 and Figure 2 indicates that using heuristic algorithms led to increased resource utilization. The actual

implementation of FCFS to investigate the effect of increasing task loads also experienced slight

improvement from 58.3% to 62.7%. However, heuristic schedulers used the available resources in a

significantly better manner in terms of efficiency. The PSO algorithm reached the highest percentage of

85.1% for 500 tasks with the GA and ACO closer to them and with just slightly lower results.

Table 2 – Resource Utilization (%)

Task

Count

FCFS GA ACO PSO

100 58.3 75.6 74.2 76.5

200 60.2 79.4 77.6 80.7

300 61.5 81.5 79.3 82.5

400 62.1 82.3 80.1 84.0

500 62.7 83.2 81.5 85.1

Figure 2 – Resource Utilization

These results substantiate that among the heuristic algorithms used, those that include the characteristics of

natural swarm intelligence yield improved adaptive behavior in response to changes in resource availability.

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

99

http://amresearchreview.com/index.php/Journal/about

Page 99

DOI: Availability

Thus, with its help, PSO can maintain the particles which represent the schedule options and enhance the

availability of the parts and nodes at a faster rate, so it reduces idle nodes, and increases parallelism. The

enhancement of this aspect has implications for both costs and energy consumption in bigger smart grids.

3. Load Balancing Index

Table 3 and Figure 3 depict a general load balancing index for all delivered tasks. A lower mean is preferable,

and in this case, PSO was most favorable with the mean decreasing progressively from 0.20 to 0.11. GA and

ACO had similar trends and were also stepwise improvements with the increase in task size. FCFS suffered

the lowest in load distribution, with load value stagnating at 0.28 even if the number of tasks reached its

highest point.

Table 3 – Load Balancing Index

Task Count FCFS GA ACO PSO

100 0.32 0.21 0.23 0.20

200 0.30 0.18 0.20 0.16

300 0.29 0.16 0.18 0.13

400 0.28 0.15 0.17 0.12

500 0.28 0.14 0.16 0.11

Figure 3 – Load Balancing Index

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

100

http://amresearchreview.com/index.php/Journal/about

Page 100

DOI: Availability

This evidence shows how fixed predetermined algorithms such as the FCFS fail to effectively address

varying resource availability. Heuristic however uses search-based approaches to balance loads that are

assigned to nodes, eradicating a problem of overloaded and under-working nodes. Even though the system

state is known only by PSO, the latter has an ability to prevent hotspots and enhance fault tolerance.

4. Task Success Rate

Table 4 and Figure 4 also reveal that the task success rate reduces as the number of tasks rises as defined by

the number of tasks completed within the expected standard time among the algorithms. FCFS has the worst

scalability test results reducing from 76% to 55 %, which indicates that the algorithm is not able to perform

well under conditions of increased pressures. While at 500 tasks, PSO still holds the highest figure of 83%,

and whereas GA and ACO then remained at 81% and 79% individually.

Table 4 – Task Success Rate (%)

Task Count FCFS GA ACO PSO

100 76 90 88 91

200 70 88 86 89

300 65 86 83 87

400 60 83 81 85

500 55 81 79 83

Figure 4 – Task Success Rate

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

101

http://amresearchreview.com/index.php/Journal/about

Page 101

DOI: Availability

These findings provide credibility to the argument that heuristic schedulers are ideal in ensuring SLA

adherence particularly in heavily loaded systems. Due to this, the ability to quickly make a decision and

adjust the node load, more tasks are in a position to meet deadlines when using PSO.

5. Average Wait Time

From Table 5 and Figure 5 above, we find that the average wait time under FCFS grows significantly with the

number of tasks, from 45s at 100 tasks to 225s at 500 tasks. The values represent an outstanding performance

for PSO, which stays with the lowest average wait time – 150 sec during the maximal load. This is because

both GA and ACO have much less waiting time than FCFS.

Table 5 – Average Wait Time (s)

Task Count FCFS GA ACO PSO

100 45 30 33 28

200 90 65 70 60

300 135 100 105 95

400 180 130 140 125

500 225 160 170 150

Figure 5 – Average Wait Time

This metric highlights the ways that using heuristic-based methods help avoid congestion of queues. Unlike

FCFS that queues the tasks, the PSO supports the ranking of the priority levels of the tasks depending on the

available nodes thus leading to faster task scheduling. Both GA and ACO get improved with their iteration

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

102

http://amresearchreview.com/index.php/Journal/about

Page 102

DOI: Availability

improvement procedures, but the real-time agility of PSO is much more prominent for lesser delay.

4.6 Average Response Time

Table 6 and figure 6 are in agreement with earlier findings. FCFS also experiences the longest average

response time which is total time required from task submission to task completion, where the time gradually

increases to 235 sec at 500 tasks. However, PSO has the least of the response time and it takes the maximum

180 seconds only. Again GA and ACO significantly outperforms the other heuristics but are trailed slightly

by PSO.

Table 6 – Average Response Time (s)

Task

Count

FCFS GA ACO PSO

100 55 35 38 32

200 100 75 80 70

300 145 115 120 110

400 190 150 155 145

500 235 185 190 180

Figure 6 – Average Response Time

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

103

http://amresearchreview.com/index.php/Journal/about

Page 103

DOI: Availability

Quick responsiveness is crucial for such applications as interactive and those with low tolerance to latency.

Since makespan can easily be related to response time, coupled by reduced wait time, causes improved

response time as apportioned to PSO. This also confirms that it fits well in real-time grid-based services

whereby delay sensitive computing is crucial.

7. Throughput

In Table 7 and Figure 7, each of the heuristic algorithms is seen to have a higher throughput compared to

FCFS for tasks per second. FCFS does not change from 0.70 tasks/sec while PSO keeps a throughput of over

0.93 for all task loads. FCFS has the least number with a value of around 0.76 while GA and ACO have

higher values, which are around 0.89 and 0.87, respectively.

Table 7 – Throughput (tasks/sec)

Task

Count

FCFS GA ACO PSO

100 0.67 0.91 0.87 0.95

200 0.69 0.89 0.85 0.95

300 0.70 0.91 0.87 0.94

400 0.70 0.90 0.87 0.93

500 0.70 0.89 0.87 0.93

Figure 7 – Throughput

This explains why in healthcare organizations, high throughput is a result of efficiency in conduction of tasks

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

104

http://amresearchreview.com/index.php/Journal/about

Page 104

DOI: Availability

and proper scheduling. These PSO’s swarm dynamics help in maintaining the continuous maximum task

throughput, interruption free. This also enhances the productivity of the system while at the same time

improving completion time for parallel activities in scientific and business computations.

8. Energy Consumption

Last, Table 8 and Figure 8 show the total amount of energy in joules used by all algorithms and across all task

sizes. The shortest scheduling algorithm used the highest energy quantity and it equalled to 29,000 joules

when 500 tasks were being arranged. The comparison of energy consumption of the algorithms revealed that

PSO is the most efficient compared to the others using 19,750 joules at the same load while GA and ACO

had relatively higher energy consumption patterns.

Table 8 – Energy Consumption (Joules)

Task

Count

FCFS GA ACO PSO

100 5800 4100 4300 3950

200 11600 8200 8600 7900

300 17400 12300 12900 11850

400 23200 16400 17200 15800

500 29000 20500 21500 19750

Figure 8 – Energy Consumption

This data supports the proposition that resource-efficient scheduling is conducive to reducing energy

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

105

http://amresearchreview.com/index.php/Journal/about

Page 105

DOI: Availability

consumption in computing. Since the execution time is minimized and CPU utilization is maximized by PSO,

energy consumption is also minimized. This makes PSO not just effective but optimal for involving large

scale grid systems that have more complexities.

Discussion

This research supports the proposed hypothesis that heuristic-based task scheduling algorithms can give

significant enhancements in performance, scalability, and efficiency in grid computing environment. In all the

three heuristics that have been considered, namely, GA, ACO, and PSO, it is evident that PSO yields the best

results as far as makespan, resource utilization, load balancing, and energy efficiency of the beds are

concerned. Such observations are consistent with previous studies establishing that through the swarm

intelligence of PSO, it is possible to arrive at optimal or near-optimal solutions to problems in distributed

computing frameworks (Kumar & Verma, 2010).

The implications of these findings can be seen from the following perspectives. Moreover, the significant

make span reduction proved by heuristic algorithms especially PSO explains their capabilities to manage

resource and task queues dynamically in operation condition. This is especially important in a grid

environment that has a high level of workload fluctuations and the computer resources may be diverse and

located in different geographical locations (Gong et al., 2011). The findings are also consistent with Singh et

al. (2014), who noted that dynamic heuristics provide a better scheduling strategy than static schedulers

because the former use feedback from the environment in making their decisions.

One of the last, but not the least areas in which heuristic methods outperformed regular ones is the

management of resources. From the simulations it can also be deduced that the two algorithms were yielding

more than 80% of utilization as opposed to FCFS which was only slightly over 62%. This is because

underutilized equipment is not only wasteful in terms of energy consumption as well as reduces the output

per unit time and increases operational costs. Qureshi and Rizvi (2015) posited that ensuring high resource

utilization is mandatory for realizing the economic sustainability of UC paradigm and the findings of this

research have substantiated this claim through the efficiency with which the heuristic strategies accomplish

this task.

On the other hand, load balancing is inherently coupled to the utilization and performance as the uneven

distribution of tasks leads to overloading on some nodes while others remain idle at the same time. In line

with this, the load balancing index, observed in the current simulations, indeed low approves that PSO is

flexible to other environments. Similarly, Mishra and Sahoo (2013) pointed out that another advantage of the

PSO algorithm is its ability to distribute the processing load based on calculation of local and global optima

unlike certain other heuristic methods that are prone to fall into local optima or suffer from the problem of

early convergence.

One of the most important concerns of enterprise and research grids is the task success rate which defines the

number of completed tasks in relation to set time limits. The high figure in this case of over 83% success

even with the higher level of loads implies that apart from being a computational algorithm, PSO is time

bound on request. Rahman and Barker (2014) reach similar conclusions noting that if the metaheuristic

algorithms used by the adaptive task scheduling prioritize the task based on the given deadline constraint, it

improves the level of service in the distributed systems.

In consideration of the queueing behavior heuristics have higher values of wait- time and response-time than

other schedulers: heuristics perform better in managing task queues. FCFS, being a non-preemptive and a

purely numerical algorithm, does not possess a way by which cpu can select tasks based on their priority or

the state of the system at any time. This leads to increased waiting time as the number of waiting people

increases. In contrast, heuristic methods include the components of task profiling and resource monitoring

and are able to minimize lengths of queue and average delay. Ghasemi et al. (2013) called for intelligent

queue management in grid environments to state that it is observed that delay sensitive systems shall have to

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

106

http://amresearchreview.com/index.php/Journal/about

Page 106

DOI: Availability

introduce adaptive heuristic algorithms, a concept supported by the current study.

The analysis of throughput also supports the heuristic scheduling argument. Studies revealed that PSO

achieved constant throughput of more than 0.93 tasks/sec under various loads outshine than the FCFS. This

improvement implies that heuristic can not only choose better performing personnel or machines and arrange

appropriate tasks but also improve system capabilities. Pandit and Tripathy in their own study carried out in

2012 found that increased throughput in the environment of the grid system refers to a proper CPU and

memory scheduling and efficient process communication. This study affirms that assertion, particularly in the

context of PSO’s dynamic adaptability.

Last but not the least, integrating energy consumption into the analysis brings a new perspective to this

subject. Since green computing is becoming popular in schools and other organizations, energy efficient

scheduling has become an important aspect. In this domain, PSO outperformed the other stochastic

algorithms and used 56% and 15% less energy than FCFS and GA, respectively while it was 13% less

compared to ACO. This is in line with the findings of Dastjerdi et al. (2011 who specifically urged for

workload-aware and energy-sensitive scheduling to control the emission level of data centres and distributed

computing systems. The potential to reduce energy consumption while maintaining efficiency is one of the

main advantages of heuristic algorithms which makes them suitable for usage in the future exascale systems.

However, some concerns need to be addressed for these statements due to the following limitations that exist

in this study. The present study based its analysis is assuming static network conditions and does not

incorporate assumptions such as node failures or additional communication delays. Thus, it is necessary to

consider the usage of heuristic-like PSO algorithms that proved its efficiency in agenda scheduling.

Nevertheless, grid infrastructure commonly deals with failures and latency, and it could influence scheduling

as well. However, the purpose of utilizing GridSim for simulation is relatively advantageous and globally

appropriate, but still can hardly be considered as an accurate model of real-life grid systems of production

level. This could be done in future work by employing the proposed framework in real environments like

PlanetLab or Grid '5000 and including fault-tolerance features.

Another area whereby further research is needed concerns the development of a combined system that

combines both, ML and a heuristic method to generate new intelligent schedulers. This has been evidenced

by other scholars such as Alzahrani and Anwar (2017) who demonstrated that through reinforcement

learning, there is an improvement on the flexibility of heuristics in the learning process from previous

scheduling performances. When used together with the real-time capabilities of PSO they could develop even

more potent scheduling frameworks for the next generation of grid computing needs.

In conclusion, the discussion supports the notion that heuristic based scheduling, especially PSO, presents a

paradigm shift in achieving an optimal solution on the task allocation of Grid computing. Its advantage is not

only in shortening the time, increasing resource throughput, but also in such values as scalability, service, and

power density. As the computational infrastructure becomes larger and more dispersed in the near future, the

further improvement and implementation of heuristic scheduling frameworks will become crucial.

References
Abawajy, J. H. (2004). Scheduling policy for cluster and grid computing environments. The International

Journal of Computer and Telecommunications Networking, 44(3), 353–370.

https://doi.org/10.1016/j.comnet.2003.09.020

Abraham, A., Buyya, R., & Nath, B. (2000). Nature's heuristics for scheduling jobs on computational grids.

8th IEEE International Conference on Advanced Computing and Communications, 45–52.

https://doi.org/10.1109/ADCOM.2000.917073

Alzahrani, B. A., & Anwar, F. (2017). Reinforcement learning-based scheduling for cloud computing systems.

International Journal of Advanced Computer Science and Applications, 8(10), 244–251.

https://doi.org/10.14569/IJACSA.2017.081031

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

107

http://amresearchreview.com/index.php/Journal/about

Page 107

DOI: Availability

Bakir, H. A., & Gündüz, M. Z. (2016). A modified ant colony optimization algorithm for job scheduling in

grid computing systems. Journal of Intelligent & Fuzzy Systems, 31(6), 3529–3539.

https://doi.org/10.3233/IFS-162184

Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.-H., & Vahi, K. (2009). Characterization of

scientific workflows. 3rd Workshop on Workflows in Support of Large-Scale Science, 1–10.

https://doi.org/10.1145/1645164.1645168

Bittencourt, L. F., & Madeira, E. R. (2011). HCOC: A cost optimization algorithm for workflow scheduling in

hybrid clouds. Journal of Internet Services and Applications, 2(3), 207–227.

https://doi.org/10.1007/s13174-011-0045-4

Braun, T. D., Siegel, H. J., Beck, N., Bölöni, L. L., Maheswaran, M., Reuther, A. I., ... & Freund, R. F. (2001).

A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous

distributed computing systems. Journal of Parallel and Distributed Computing, 61(6), 810–837.

https://doi.org/10.1006/jpdc.2000.1714

Buyya, R., Abramson, D., & Giddy, J. (2005). An economy-based resource management and scheduling

system for grid computing. Concurrency and Computation: Practice and Experience, 14(13–15), 1507–

1542. https://doi.org/10.1002/cpe.690

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., & Brandic, I. (2009). Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Generation

Computer Systems, 25(6), 599–616. https://doi.org/10.1016/j.future.2008.12.001

Chen, L., Liu, J., Chen, H., & Xu, Z. (2020). Deep reinforcement learning-based scheduling for distributed

computing systems. IEEE Transactions on Network and Service Management, 17(4), 2494–2506.

https://doi.org/10.1109/TNSM.2020.3011131

Dastjerdi, A. V., Tabatabaei, S. G., & Buyya, R. (2011). An effective architecture for automated appliance

energy management system applying ontology-based cloud discovery. Proceedings of the International

Conference on Energy Efficient Computing and Networking, 115–124.

https://doi.org/10.1145/1993744.1993761

Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., ... & Livny, M. (2005). Pegasus: A

framework for mapping complex scientific workflows onto distributed systems. Scientific

Programming, 13(3), 219–237. https://doi.org/10.3233/SPR-2005-13302

Dogan, A., & Özgüner, F. (2002). Genetic algorithm-based scheduling of meta-tasks with priority and deadline

constraints in heterogeneous computing systems. Proceedings of the International Conference on

Parallel Processing, 3, 11–18. https://doi.org/10.1109/ICPP.2002.1040913

Dorigo, M., & Di Caro, G. (1999). The ant colony optimization meta-heuristic. In D. Corne, M. Dorigo, & F.

Glover (Eds.), New ideas in optimization (pp. 11–32). McGraw-Hill.

Duro, F., Hernández, L., Alonso, J., & Gómez, A. L. (2018). A decentralized grid scheduling algorithm for

large-scale systems using intelligent agents. Concurrency and Computation: Practice and Experience,

30(12), e4432. https://doi.org/10.1002/cpe.4432

Eberhart, R., & Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings of the Sixth

International Symposium on Micro Machine and Human Science, 39–43.

https://doi.org/10.1109/MHS.1995.494215

Foster, I., & Kesselman, C. (2004). The Grid 2: Blueprint for a new computing infrastructure (2nd ed.).

Morgan Kaufmann.

Garg, R., Choudhary, S., & Sharma, A. (2011). A hybrid heuristic for task scheduling in grid computing

environments. International Journal of Computer Applications, 39(16), 1–5.

https://doi.org/10.5120/4930-7264

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

108

http://amresearchreview.com/index.php/Journal/about

Page 108

DOI: Availability

Ghanbari, S., & Othman, M. (2012). A priority based job scheduling algorithm in cloud computing. Procedia

Engineering, 50, 778–785. https://doi.org/10.1016/j.proeng.2012.10.085

Ghasemi, A., Ghasemi, A., & Motameni, H. (2013). A novel task scheduling algorithm based on clustering

and genetic algorithm in computational grid. Journal of Supercomputing, 66(3), 1574–1592.

https://doi.org/10.1007/s11227-013-0936-2

Gong, C., Liu, J., Zhang, Q., Chen, H., & Gong, Z. (2011). The characteristics of cloud computing.

Proceedings of the 39th International Conference on Parallel Processing Workshops, 275–279.

https://doi.org/10.1109/ICPPW.2010.45

Holland, J. H. (1992). Adaptation in natural and artificial systems: An introductory analysis with applications

to biology, control, and artificial intelligence. MIT Press.

Kaur, K., & Kinger, S. (2015). Dynamic critical path-based task scheduling algorithm for grid computing.

Procedia Computer Science, 57, 144–150. https://doi.org/10.1016/j.procs.2015.07.377

Kumar, A., & Verma, A. (2010). Independent task scheduling in grid computing using hybrid particle swarm

optimization with simulated annealing. International Journal of Computer Applications, 20(5), 40–46.

https://doi.org/10.5120/2457-3307

Kwok, Y. K., & Ahmad, I. (1999). Static scheduling algorithms for allocating directed task graphs to

multiprocessors. ACM Computing Surveys (CSUR), 31(4), 406–471.

https://doi.org/10.1145/344588.344618

Lin, W., Liu, C., & Zhang, Y. (2020). A heuristic scheduling algorithm for hybrid grid-cloud computing

environments. Cluster Computing, 23(2), 939–952. https://doi.org/10.1007/s10586-019-02935-4

Liu, C. H., Lin, C. S., & Lee, J. W. (2008). Fuzzy scheduling algorithm for grid computing system. Future

Generation Computer Systems, 24(8), 906–917. https://doi.org/10.1016/j.future.2007.10.002

Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., & Freund, R. F. (1999). Dynamic mapping of a class of

independent tasks onto heterogeneous computing systems. Journal of Parallel and Distributed

Computing, 59(2), 107–131. https://doi.org/10.1006/jpdc.1999.1548

Mishra, S. K., & Sahoo, B. (2013). Efficient task scheduling for cloud computing environment. International

Journal of Engineering Research & Technology, 2(10), 1250–1256.

Muthusamy, G., Kannan, R., & Chandrasekaran, R. M. (2012). An efficient scheduling algorithm for load

balancing using hybrid particle swarm optimization in grid environment. International Journal of

Computer Applications, 45(17), 14–19. https://doi.org/10.5120/6936-9247

Nabrzyski, J., Schopf, J. M., & Weglarz, J. (2004). Grid resource management: State of the art and future

trends. Springer Science & Business Media.

Nazeer, K. A. A., & Azween, A. (2010). Artificial immune system based scheduling algorithm for grid

computing. International Journal of Computer Science and Information Security, 8(4), 71–77.

Page, J., & Carrera, D. (2006). A resource-aware heuristic for scheduling workflows in grid computing. Grid

2006 Workshop, IEEE, 131–137.

Pandey, S., Wu, L., Guru, S. M., & Buyya, R. (2010). A particle swarm optimization-based heuristic for

scheduling workflow applications in cloud computing environments. 24th IEEE International

Conference on Advanced Information Networking and Applications, 400–407.

https://doi.org/10.1109/AINA.2010.31

Pandit, P., & Tripathy, S. (2012). Load balancing in cloud computing using modified active monitoring load

balancer. International Journal of Engineering Research and Applications, 2(4), 1003–1007.

http://amresearchreview.com/index.php/Journal/about

http://amresearchreview.com/index.php/Journal/about

Volume 3, Issue 4 (2025)

109

http://amresearchreview.com/index.php/Journal/about

Page 109

DOI: Availability

Qureshi, A., & Rizvi, S. A. (2015). A comparative analysis of task scheduling strategies in grid computing.

Journal of Computer Sciences and Applications, 3(2), 23–29. https://doi.org/10.12691/jcsa-3-2-1

Rahman, M., & Barker, A. (2014). Scheduling workflows in cloud using cost and deadline constrained

provisioning. IEEE Transactions on Services Computing, 7(4), 489–500.

https://doi.org/10.1109/TSC.2013.229

Rashid, M., & Raza, S. (2018). Machine learning approaches in scheduling of tasks in grid computing: A

review. International Journal of Advanced Computer Science and Applications, 9(5), 105–113.

https://doi.org/10.14569/IJACSA.2018.090516

Singh, M. P., Bansal, R., & Jangra, A. (2014). A new approach for task scheduling based on genetic algorithm

in cloud computing. International Journal of Computer Applications, 96(25), 29–34.

https://doi.org/10.5120/16883-6785

Singh, S., & Chana, I. (2016). A survey on resource scheduling in cloud computing: Issues and challenges.

Journal of Grid Computing, 14(2), 217–264. https://doi.org/10.1007/s10723-015-9359-2

Smanchat, S., & Viriyapant, K. (2009). Bee colony optimization for job scheduling in grid computing.

International Journal of Computer and Electrical Engineering, 1(5), 638–642.

https://doi.org/10.7763/IJCEE.2009.V1.95

Somasundaram, K., & Govindarajan, R. (2009). An efficient load balancing algorithm for heterogeneous grid

computing. International Journal of Computer Science Issues, 6(2), 38–43.

Suri, B., & Garg, K. (2013). A novel heuristic based task scheduling algorithm for grid computing using

genetic algorithm. International Journal of Computer Applications, 64(22), 6–12.

https://doi.org/10.5120/10701-5570

Topcuoglu, H., Hariri, S., & Wu, M. Y. (2002). Performance-effective and low-complexity task scheduling for

heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems, 13(3), 260–274.

https://doi.org/10.1109/71.993206

Venugopal, S., Buyya, R., & Ramamohanarao, K. (2006). A taxonomy of data grids for distributed data

sharing, management, and processing. ACM Computing Surveys (CSUR), 38(1), 3–53.

https://doi.org/10.1145/1132952.1132955

Wang, Y., Wang, H., Zhang, X., & Liu, Y. (2010). A hybrid heuristic algorithm for job scheduling problem in

grid computing. Proceedings of the 2010 International Conference on Computational Intelligence and

Software Engineering, 1–5. https://doi.org/10.1109/CISE.2010.5676982

Xhafa, F., & Abraham, A. (2010). Metaheuristics for grid scheduling problems. In Metaheuristics for

scheduling in distributed computing environments (pp. 1–37). Springer. https://doi.org/10.1007/978-3-

642-13293-4_1

Yao, Q., Liu, L., Wu, Z., & Luo, D. (2017). An improved particle swarm optimization algorithm for grid

scheduling considering energy consumption. Future Generation Computer Systems, 76, 291–298.

https://doi.org/10.1016/j.future.2016.06.026

Yu, J., & Buyya, R. (2006). A taxonomy of scientific workflow systems for grid computing. ACM SIGMOD

Record, 34(3), 44–49. https://doi.org/10.1145/1084805.1084814

Zhao, J., Zhang, W., Liu, J., & Li, Y. (2009). A task scheduling algorithm based on PSO for grid computing.

International Symposium on Intelligent Information Technology Application Workshops, 53–56.

https://doi.org/10.1109/IITAW.2008.136

Zomaya, A. Y., & Teh, Y. H. (2001). Observations on using genetic algorithms for dynamic load-balancing.

IEEE Transactions on Parallel and Distributed Systems, 12(9), 899–911.

https://doi.org/10.1109/71.951065

http://amresearchreview.com/index.php/Journal/about

