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The heat equation, a partial differential equation in Mathematics and 

Physics, plays a key role in various fields including probability 

theory, Brownian motion, and financial mathematics. This work 

presents a comparative study of various finite difference schemes, 

comprised of Forward Time Central Space (FTCS), Backward Time 

Central Space (BTCS), Crank-Nicolson (CN), and the Alternating 

Direction Implicit (ADI) method for approximating the two-

dimensional Heat equation. The FTCS method, despite its simplicity 

and computational efficiency, is known to be conditionally stable and 

has limitations for large-scale problems. Implicit methods such as 

BTCS and CN offer improved stability at the cost of increased 

computational complexity. The ADI method, designed to handle 

large sparse systems efficiently, emerges as a robust alternative for 

high-dimensional and computationally intensive problems. This 

work employs these schemes, evaluates their stability and 

computational performance, and compares the simulation results 

against existing benchmarks. The findings highlight the advantages 

and limitations of each approach, with a particular focus on the 

suitability of the ADI method for practical applications involving 

two-dimensional heat conduction. 

1. Introduction 

The heat equation is mathematical equation used to study the flow of heat conduction in a metal rod or in a metal 

square plate. The Heat equation is a popular equation that is regarded as the heat diffusion equation. The heat 

equation is solved analytically and as well as it is approximated numerically. The Heat equation analysis the 

physical phenomena that how does a hot body decreases in temperature according the to the atmosphere of the 

surroundings [1]. The heat equation has wider applications in probability and then financial engineering where 

the random walks are commonly studied. This equation serves as the model in Financial Mathematics. This 

equation is used computer algorithms based on the financial markets. The equation is used as model equation 
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for various applications. Variety of mathematical methods are tested using this equation. There are many other 

equations which deduce from this equation such the Black-Scholes equation [2], [3] used in financial 

mathematics is small variant of the heat equation. Further, many finite difference schemes are implemented 

using this model equation.  The non-linear and complex partial differential equations implementation for 

discretization or computer simulations then this equation is used as a model equation [4]. Consideration of this 

equation in higher dimensions opens many new ways of investigations such as for two-dimensions the spatial 

part of the equation becomes a Laplacian equation [5].  

Considering the widespread usage of the heat equation, the aim of this research is set to do work on the best 

finite difference scheme using the two-dimensional heat equation. In this study, the heat equation will be 

approximated using different finite difference schemes and then it will be discretized in Alternating Direction 

Implicit (ADI) scheme for the numerical approximations.  

The ADI method was first introduced by Peaceman and Rachord [6]. Their work was regarded remarkable. 

Basically, the ADI method had essentially solved the problem of using complex and sparse matrices which are 

used in other finite difference schemes such as Crank-Nicolson method [7]. This method proved to be 

outperforming for the higher grids and the parallel computing problems.  

There are some limitations of applying commonly used finite difference schemes for Heat equation which 

include Forward time, Central Space (FTCS) method, Backward time, Central Space (BTCS) method and Crank-

Nicolson (CN) method.   

The FTCS method which is well known as Forward Euler method, is considered unstable method though it is 

fast. Basically, The FTCS is an explicit scheme which is mainly considered limited for the finite difference 

schemes therefore implicit schemes are more preferred such Crank-Nicolson method. As the Crank-Nicolson 

method uses the huge and sparse matrices which require costly computations for bigger problems. The ADI 

scheme has been the motivation for such big and complex problems. We employ all finite difference to 

approximate the compare the results.  

Except the Introduction section, other sections are included. The literature review is given in section 2, 

mathematical formulation of heat equation is presented in section 3, Finite difference methods and the numerical 

approximations are given in section 4. The conclusions are given in section 5.  

2. Literature Review 

The Heat equation is mainly used in the field of Physics where the magnetic fields release geothermal gases [8]. 

The finite difference scheme, with aided help of computers, based on the Heat equation to study on steady natural 

convection flow for effects of thermal radiation on a vertical plane surface [9]. Furthermore, the finite difference 

schemes were implemented for the  mixed convection or radiation consequences of unsteady natural convection 

using the Heat equation [8], [10]. In a study, the phenomena of oscillatory flows was solved analytically using 

the Heat equation [11]. The Heat equation plays a key role in random movements, especially for the Brownian 

motion, this equation is used to investigate the random movement of bodies in a fluid flow. It has applications 

in financial mathematics where Brownian motion is used to understand the stock market patterns which become 

easy to predict the future sales. Another important equation, well properly known as the Black-Scholes equation, 

is modelled using the Heat equation model in the vast filed of financial mathematics. It is applied in diversified 

fields to approximate the partial differential equations of very complex problems and to solve scientific 

mysteries. It has also been used to solve Lie symmetry theory to decrease the overall symmetry in Newtonian 
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fluids [8].  

The finite difference methods come under the numerical analysis, a branch of mathematics. The differential 

equations are discretized on specified gird using finite difference methods to approximate numerically. The 

approximations are basically the transformations of derivatives in difference schemes [9]. The difference 

formulas are then analyzed based on their stability and convergence to obtain optimal accuracies. Thus, the 

differential equations for various systems portray the simulations. 

Exploring the physical phenomena where the partial differential equations are used, a deep insight can be 

expressed. A variety of steady-state and time evolution problems are brought into the approximate solutions 

using finite difference methods but most of these problems are not solvable by analytical approach due to their 

initial and boundary conditions considerations. These physical phenomena involve mathematical based 

equations which involve physics which are continuous element dynamics, quantum mechanics, electrodynamics 

and furthermore, mass and heat-transfer theories are well described by the researchers [12], [13]. The 

mathematical methods for the solution of such equations of these physical phenomena involve the use of 

Riemann Integration, Green’s Function and Fourier Method. 

For the solution of some of these equations, they use methods such as the Fourier Method, the Riemann 

Integration, and the use of the Green’s Function. Always these methods do not yield the exact analytical solution 

and this where the numerical techniques come into play and yield the approximate solution as close to the 

solution of the problem [14], [15], [16].  

The Harriot [17], [18], [19], [20] developed numerical methods which were used to solve equations and later 

these developed methods were applied in engineering problems in 1943. In the same, finite element method, a 

numerical method was developed by Courant. The Courant on the other hand applied the variation method of 

Ritz to obtain the numerical solution for the mechanical systems [21], [22]. A necessary condition of 

convergence was named with Courant-Friedrichs-Lewy (CFL) used in obtaining the approximate solution of 

partial differential equations in partial differentials. The importance of this condition is known when the 

differential equations are carried out through the discrete schemes and the time step value is obtained to specific 

value (a characteristic value), if not taken care of the step value the code may be unstable and numerical values 

may diverge.  

Thus, the importance of simulations can be recognized as the effective tool to approximate the solution and 

predict the convergence. The study of numerical methods for the simulations to do in an accurate way, requires 

a thorough study of the fundamentals of the numerical schemes with proper convergence criteria. The complexity 

of algorithms used to describe become easy after applying the specific discrete schemes used in the numerical 

methods. The model and the simulation process are two different things, at first the model is prepared which is 

regarded as the abstract of the steps described in the phenomena and the putting those steps into the practical is 

regarded as the simulation process. Usually, a mathematical model consists of the partial differential, initial 

values and the boundary conditions and it is brought into simulations with careful planning by using algorithms 

to solve the problem specifically. The numerical process come into existence when the mathematical problems 

based real phenomena become hard to determine the solution through the analytical methods. To approach such 

problems the simulations are used based on the algorithms which yield a contrasted solution of the problem and 

the results obtained from these simulations are compared hypothetical ideas or earlier anticipated solutions.  

As in many cases the analytical solution is hardly possible, especially in the mathematical problems with regions 

of non-regular geometry. The finite difference schemes play a vital role for the numerical solution of such 
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problems. However, the convergence of code and stability tests determine the best finite difference scheme to 

be used. Generally, the finite difference methods replace the continuous derivatives into discrete schemes and a 

fine mash or grid is used to fit discrete formulas, a mesh or grid is shown in the Figure 1 where the numerical 

solution is assumed to be solved.  

 

Figure 1. Mesh used for the solution of the Heat Equation [23].  

3. Mathematical Formulation of the Heat Equation 

As an example of the hot body is hot metal rod or a wire with a certain Length, say L. In such context, the 

mathematical equation forms as one-dimensional Heat equation, the one-dimensional Heat equation can be 

described as follows:  

 

𝑢(𝑥, 𝑦)= temperature of the body 

Then the 1-D form of the heat equation becomes:  

𝜕𝑢

𝜕𝑡
= 𝐾

𝜕2𝑢

𝜕𝑥2
,   0 ≤ 𝑥 ≤ 𝐿 𝑎𝑛𝑑 0 ≤ 𝑡 ≤ 𝑇, (1)  

where the constant 𝐾 is for the thermal diffusivity, and is known as constant coefficient and u is an order 

parameter. The equation (1) is base version of the one-dimensional Heat equation. This can further be extended 

in two-dimensions, the phenomena can be assumed for the heat in a square plate of Length 𝐿×𝐿. The two-

dimensional heat equation for the square plate can be represented as:  

Let  

𝑢(𝑥, 𝑦, 𝑡) = temperature of the body, 

The two-dimensional heat equation [24], is given as:  
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𝜕𝑢

𝜕𝑡
= 𝐾 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) ,   0 ≤ 𝑥 ≤ 𝐿, 0 ≤ 𝑦 ≤ 𝐿 𝑎𝑛𝑑 0 ≤ 𝑡 ≤ 𝑇, (2)  

 

where the constant coefficient 𝐾 is the thermal diffusivity and the two-dimensional heat equation is subject to 

following initial condition:  

𝑢(𝑥, 𝑦, 𝑡) = 𝑓(𝑥, 𝑦)   𝑤ℎ𝑒𝑟𝑒 (𝑥, 𝑦) ∈ 𝑅, (3)  

And for the edges of the plate, the Dirichlet boundary conditions are given as:  

 

𝑢(0, 𝑦, 𝑡) = 𝑢(𝐿, 𝑦, 𝑡)   = 0 

𝑢(𝑥, 0, 𝑡) = 𝑢(𝑥, 𝐿, 𝑡)   = 0 
(4)  

a. Analytical solution of one-dimensional Heat equation  

In this section, the analytical solution of one-dimensional heat equation is briefly described. The analytical 

solution can be carried using separation of variables technique in three steps. Consider the heat flow in a uniform 

rod of length 𝐿 and 𝑥 ∈ [0, 𝐿] using equation (1) with following boundary and initial conditions:    

Boundary conditions: 

𝑢(0, 𝑡) = 0 for 𝑡 ≥ 0, 

𝑢(𝐿, 𝑡) = 0 for 𝑡 ≥ 0. 

(5) 

Initial condition:  

𝑢(𝑥, 0) = 𝑓(𝑥) for 𝑥 ∈ [0, 𝐿] 

(6) 

 

After applying initial condition given in equation (6) in analytical solution of equation (1), the general solution:  

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡)

∞

𝑛

 (7)  

becomes:  

𝑢(𝑥, 𝑡) = ∑ 𝐵𝑛sin (
𝑛𝜋

𝐿
𝑥) 𝑒

−
𝐾𝑛2𝜋2

𝐿2 𝑡

∞

𝒏

 (8)  

The equation (8) is the analytical solution of the one-dimensional heat equation (1). The 𝐵𝑛 in equation (8) is 

used as the Fourier coefficient.  

Let 𝑓(𝑥) = 100sin (𝜋𝑥/80), and 𝐾 = 1,  𝐿 = 80𝑐𝑚 for the following equation:  
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∑ 𝐵𝑛 sin (
𝑛𝜋

𝐿
𝑥) = 𝑓(𝑥)

∞

𝒏=𝟏

 (9)  

By comparing coefficients, we obtain: 

𝑢𝑛(𝑥, 𝑡) = 100 sin (
𝜋

80
𝑥)  𝑒

−
𝐾2𝜋2

(80)2𝑡
. (10)  

The solution was obtained using boundary conditions and applying initial condition. The obtained solution 

passed through various mathematical procedures which included ordinary differential equations and Fourier 

series. The plot of the analytical solution based on the chosen function is shown in Figure 2.  

 

Figure 2. Plotting of the analytical solution of the Heat equation (1) 

4. Finite Difference Methods for the Heat Equation 

In this section, the approximate solution of the two-dimensional Heat equation has been presented using various 

finite difference schemes. Here, mainly four finite difference schemes are used for the two-dimensional Heat 

equation (2) which comprise the Forward Euler method or Forward in Time, Centered in Space (FTCS), 

Backward Euler method or Backward in Time, Centered in Space, the Crank-Nicolson scheme and the 

Alternating Direction Implicit Method (ADI). These all schemes are presented with their stability analysis.  

The two-dimensional heat equation (2) can be discretised in FTCS as follows:   

 

𝜕𝑢

𝜕𝑡
=

𝑢𝑖,𝑗
𝑛+1 − 𝑢𝑖,𝑗

𝑛

∆𝑡
  (11) 

𝜕2𝑢

𝜕𝑥2
=

𝑢𝑖+1,𝑗
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛

(∆𝑥)2
  (12) 
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𝜕2𝑢

𝜕𝑦2
=

𝑢𝑖,𝑗+1
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗−1
𝑛

(∆𝑦)2
  (13) 

 

a. Forward Time and Centered Space (FTCS) 

The FTCS, an explicit finite difference scheme, is also called the Forward Euler method and approximates the 

numerically in forward space. The substitutions of equations (11), (12) and (13) in equation (2), the two-

dimensional Heat equation becomes [3]:  

𝑢𝑖,𝑗
𝑛+1 − 𝑢𝑖,𝑗

𝑛

∆𝑡
= 𝐾 (

𝑢𝑖+1,𝑗
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖−1,𝑗
𝑛

(∆𝑥)2
+

𝑢𝑖,𝑗+1
𝑛 − 2𝑢𝑖,𝑗

𝑛 + 𝑢𝑖,𝑗−1
𝑛

(∆𝑦)2
)   (14) 

After the algebraic manipulation and setting the values 𝑟𝑥 = 𝐾
∆𝑡

(∆𝑥)2  and 𝑟𝑦 = 𝐾
∆𝑡

(∆𝑦)2 , the equation (14) 

becomes:  

𝑢𝑖,𝑗
𝑛+1 = 𝑢𝑖,𝑗

𝑛 (1 − 2𝑟𝑥 − 2𝑟𝑦) + 𝑟𝑥(𝑢𝑖+1,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛 ) + 𝑟𝑦(𝑢𝑖,𝑗+1
𝑛 + 𝑢𝑖,𝑗−1

𝑛 )  (15) 

The equation (15) is the discretised in FTCS finite difference scheme that approximates the two-dimensional 

equation (2).  

 

The stability analysis of equation (14) ensures the approximate value of time step ∆𝑡 and can be represented 

using Fourier term [3] as:  

𝑢𝑖,𝑗
𝑛 = 𝜉𝑛𝑒𝑖𝑖𝑝𝜋∆𝑥𝑒𝑖𝑗𝑞𝜋∆𝑥  (16) 

The substitution of 𝑢𝑖,𝑗
𝑛   from equation (16) into equation (15), and the resulting equation divided by 𝜉𝑛+1 

becomes:  

𝜉 = 1 − 4𝑟𝑥 sin2 (
𝑝𝜋∆𝑥

2
) − 4𝑟𝑦 sin2 (

𝑞𝜋∆𝑦

2
)  (17) 

Which results in the Neumann criterion |𝜉| ≤ 1 where 𝑟𝑥 + 𝑟𝑦 ≤
1

2
 and this result limits ∆𝑡 to be chosen smaller. 

The FTCS has truncation error of 𝑂(∆𝑡) + 𝑂(∆𝑥2) which is first-order in time and second-order in space [3].  

A 3D surface plot has been shown in Figure 3 from the numerical approximation of two-dimensional Heat 

equation (2) based on the FTCS method (15), the configurations are 𝑓(𝑥) = 100sin (𝜋𝑥/80), and 𝐾 = 1,  𝐿 =
80𝑐𝑚, which have been used for a graph in Figure 2 for analytical solution of one-dimensional Heat equation 

(1). 
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Figure 3. Surface plot of 2D Heat equation using FTCS method. 

b. Backward Time Centred Space (BTCS) 

The BTCS finite difference is an implicit Backward Euler method where approximation take place on left hand 

side in the time space from step space on right hand side, a behaviour that is opposite to the explicit FTCS. 

Same substitution of equations (11), (12) and (13) in equation (2) is done but with slight change in equation 

(12) and (13), the value of 𝑛 is set to 𝑛 + 1. The equation of BTCS is then obtained:  

(1 + 2𝑟𝑥 + 2𝑟𝑦)𝑢𝑖,𝑗
𝑛+1 − 𝑟𝑥(𝑢𝑖+1,𝑗

𝑛+1 + 𝑢𝑖−1,𝑗
𝑛+1 ) − 𝑟𝑦(𝑢𝑖,𝑗+1

𝑛+1 + 𝑢𝑖,𝑗−1
𝑛+1 ) = 𝑢𝑖,𝑗

𝑛   (18) 

The equation (18) works in way that the values of 𝑢𝑛+1 are calculated by the help a Matrix which uses the 

technique of system of equations solving. Say, 𝐴𝑥 = 𝑏 form where 𝐴 is the matrix of the size (𝑁𝑥 − 1)  × (𝑁𝑥 −
1) and 𝑏 is a vector matrix. There are several iterative methods to solve for example LU decomposition method, 

Crout factorization method and Conjugate gradient method, etc. Finally, the system of equations becomes 

inverse matrix 𝑥 = 𝐴−1𝑏 form to be solved.  

The substitution of equation (16) with a slight change of value 𝑛 = 𝑛 + 1 in equation (18) and dividing by  𝜉𝑛+1, 

the stability equation takes the form: 

𝜉 =
1

1 + 4𝑟𝑥𝑠𝑖𝑛2 (
𝑝𝜋∆𝑥

2 ) + 4𝑟𝑦 sin2 (
𝑞𝜋∆𝑦

2 )
 (19) 

The equation (19) ensures the stability for the time step ∆𝑡 for BTCS scheme where |𝜉| ≤ 1. The limitation 𝑟 ≤
1/2 becomes unnecessary. Thus, BTCS becomes unconditionally stable by making time step ∆𝑡 independent to 

be used for any value. The error order of implicit BTCS scheme and explicit FTCS scheme has same, the first-

order in time and second-order in step space.  

A 3D surface plot has been shown in Figure 4 from the numerical approximation of two-dimensional Heat 

http://amresearchreview.com/index.php/Journal/about


 

 

 

   174 
  

http://amresearchreview.com/index.php/Journal/about 

Volume 3, Issue 6 (2025) 

http://amresearchreview.com/index.php/Journal/about 

Page 174 

DOI: Availability 

equation (2) based on BTCS method using same configuration that of FTCS.  

 

 

Figure 4. Surface plot of 2D Heat equation using BTCS method. 

c. Crank-Nicolson (CN)  

The CN scheme was first proposed by Crank & Nicolson [25]. This scheme was adopted in finite difference 

methods to make the methods more stable and unconditional for ∆𝑡. The CN has been employed in finite 

difference schemes to approximate the differential equations for various applications such as Financial 

Mathematics, Physics, and Engineering. It is considered a robust implicit finite difference scheme than BTCS 

and FTCS. The CN scheme results in second-order truncation error in time and in step. Despite, the CN scheme 

being more stable and second-order accurate, it produces uncontrolled oscillations in numerical calculations. 

The oscillations are caused by using matrices with bigger size in complex problems for non-linear partial 

differential equations [26].   

The formation of CN scheme is based on averaging the explicit FTCS and implicit BTCS schemes by using the 

central difference derivatives. After the substitution of FTCS and BTCS equations (15) and (18) in equation (2), 

the CN scheme becomes:  

 

𝒖𝒊,𝒋
𝒏+𝟏−𝒖𝒊,𝒋

𝒏

∆𝑡
= 𝐾 (

𝑢𝑖+1,𝑗
𝑛  −2𝒖𝒊,𝒋

𝒏 +𝒖𝒊−1,𝒋
𝒏

∆𝑥2 +
𝒖𝒊,𝒋+1

𝒏  −𝟐𝒖𝒊,𝒋
𝒏 +𝒖𝒊,𝒋−1

𝒏

∆𝑦𝟐 +
𝒖𝒊+𝟏,𝒋

𝒏+1  −𝟐𝒖𝒊,𝒋
𝒏+1+𝒖𝒊−𝟏,𝒋

𝒏+1

∆𝒙𝟐 +
𝒖𝒊,𝒋+𝟏

𝒏+1  −𝟐𝒖𝒊,𝒋
𝒏+1+𝒖𝒊,𝒋−𝟏

𝒏+1

∆𝒚𝟐

𝟐
)  (20) 

The equation (20) is the discretised CN method of two-dimensional equation (2). The variable 𝑢, in this scheme, 

is approximated by an average of 𝑛 and 𝑛 + 1 spaces.  

Further, simplifying and setting the terms, given as follows:  
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Let, ∆2
(𝑥)

𝑢𝑖,𝑗
𝑛 = 𝑢𝑖+1,𝑗

𝑛  − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖−1,𝑗

𝑛  and ∆2
(𝑦)

𝑢𝑖,𝑗
𝑛 = 𝑢𝑖,𝑗+1

𝑛  − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗+1

𝑛  and likewise setting for ∆2
(𝑥)

𝑢𝑖,𝑗
𝑛+1 

and ∆2
(𝑦)

𝑢𝑖,𝑗
𝑛+1.  Then, substituting these terms in equation (20) along with other terms where  𝑟𝑥 = 𝐾

∆𝑡

∆𝑥2 and 𝑟𝑦 

= 𝐾
∆𝑡

∆𝑦2
, the CN equation (2) becomes:  

(1 −
𝑟𝑥

2
𝛥2

(𝑥)
−

𝑟𝑦

2
𝛥2

(𝑦)
)𝑢𝑖,𝑗

𝑛+1 = (1 +
𝑟𝑥

2
𝛥2

(𝑥)
+

𝑟𝑦

2
𝛥2

(𝑦)
)𝑢𝑖,𝑗

𝑛  (21) 

For numerical approximation, the equation (21) can further be simplified by introducing the matrices such as: 

𝐴1𝑢𝑖,𝑗
𝑛+1 = 𝐴2𝑢𝑖,𝑗

𝑛  (22) 

The 𝐴1 and 𝐴2 are two-dimensional matrices of size (𝑁𝑥 − 1)(𝑁𝑦 − 1) × (𝑁𝑥 − 1)(𝑁𝑦 − 1).  Such system of 

equations can be solved by involving Conjugate Gradient method or LU decomposition method to approximate 

𝑢𝑖,𝑗
𝑛+1.  

The stability of implicit CN method for two-dimensional Heat equation is derived using discrete Neumann 

criterion involving Fourier terms. The stability analysis follows from the FTCS and BTCS, the amplification 

factor for CN scheme (21) in terms of stability is give as:  

𝜉 =
1 − 2𝑟𝑥 sin2 (

𝑝𝜋∆𝑥
2 ) − 2𝑟𝑦 sin2 (

𝑝𝜋∆𝑥
2  )

1 + 2𝑟𝑥 sin2 (
𝑝𝜋∆𝑥

2 ) + 2𝑟𝑦 sin2 (
𝑝𝜋∆𝑥

2  )
. (23) 

Assuming, 𝑟𝑥 ≥ 0 and 𝑟𝑦 ≥ 0 and |𝜉| ≤ 1 imply the CN method is unconditionally stable with truncation error 

of second-order accuracy.  

A 3D surface plot has been shown in Figure 5 from the numerical approximation of two-dimensional Heat 

equation (2) based on CN method using same configuration that of BTCS and FTCS.  
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Figure 5. Surface plot of 2D Heat equation using CN method. 

d. Alternating Direction Implicit Method (ADI) 

The Alternating Direction Implicit method uses the operator splitting technique which was first proposed by 

Peaceman and Rachford [6], [27]. The ADI finite difference method is a stronger version of CN with speed and 

accuracy. The methodology of ADI is designed to avoid using large matrices and therefore wins over the CN 

and BTCS which involve large matrices for approximating the partial differential equations. The huge matrices 

consume memory at large extent and process very slowly, this happens specially in CN method. The ADI method 

works fast and is mostly employed for parallel processing, due to its nature of splitting operator [28].  

The discretized equations of ADI for two-dimensional Heat equation (2) in the operator splitting manner are 

given as follows: 

 

𝑢
𝑖,𝑗

𝑛+
1
2 −

𝑟𝑥

2
(𝑢

𝑖+1,𝑗

𝑛+
1
2  − 2𝑢

𝑖,𝑗

𝑛+
1
2 + 𝑢

𝑖−1,𝑗

𝑛+
1
2 ) = 𝑢𝑖,𝑗

𝑛 +
𝑟𝑦

2
(𝑢𝑖,𝑗+1

𝑛  − 2𝑢𝑖,𝑗
𝑛 + 𝑢𝑖,𝑗−1

𝑛 ) (24) 

𝑢𝑖,𝑗
𝑛+1 −

𝑟𝑦

2
(𝑢𝑖,𝑗+1

𝑛+1  − 2𝑢𝑖,𝑗
𝑛+1 + 𝑢𝑖,𝑗−1

𝑛+1 ) = 𝑢
𝑖,𝑗

𝑛+
1

2 +
𝑟𝑥

2
(𝑢

𝑖+1,𝑗

𝑛+
1

2  − 2𝑢
𝑖,𝑗

𝑛+
1

2 + 𝑢
𝑖−1,𝑗

𝑛+
1

2 )  (25) 

The discretized equations (24) and (25) have been simplified further as follows:  

 

(1 −  
𝑟𝑥

2
∆2

(𝑥)
) 𝑢

𝑖,𝑗

𝑛+
1
2 =  (1 +  

𝑟𝑦

2
∆2

(𝑦)
) 𝑢𝑖,𝑗

𝑛  (26) 

(1 −  
𝑟𝑦

2
∆2

(𝑦)
) 𝑢𝑖,𝑗

𝑛+1 =  (1 +  
𝑟𝑥

2
∆2

(𝑥)
) 𝑢

𝑖,𝑗

𝑛+
1
2 (27) 
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The operators ∆2
(𝑥)

 and ∆2
(𝑦)

 in equations (26) and (27) are for step 𝑖 (𝑥-coordinate) and step 𝑗 (𝑦-coordinate). 

The system of equations (simultaneous equations) (26) and (27) refer to the operator splitting method. Equation 

(26) approximates half-spaced derivative in step 𝑖 as an implicit way (left-side) and step 𝑗 in explicit way (right-

side). Equation (27) approximates half-spaced derivative in step 𝑖 as an explicit (right-side) way and step 𝑗 in 

implicit way (left-side). The matrices are used to do numerical calculations similar to CN method in equation 

(22). Such methodology makes ADI approximation very fast and stable compared to the traditional finite 

difference methods.  

For the stability analysis of ADI, the equations (26) and (27) are combined into one equation by the substitution 

of the value of 𝑢
𝑖,𝑗

𝑛+
1

2 from equation (26) into equation (27). The resulting equation can be seen as follows:  

 

(1 −  
𝑟𝑥

2
∆2

(𝑥)
) (1 −  

𝑟𝑦

2
∆2

(𝑦)
) 𝒖𝒊,𝒋

𝒏+𝟏 = (1 +  
𝑟𝑥

2
∆2

(𝑥)
) (1 +  

𝑟𝑦

2
∆2

(𝑦)
) 𝑢𝑖,𝑗

𝑛  (28) 

The substitution of the Fourier term given in equation (16) in equation (28) by using discrete stability (Von 

Neumann) analysis, the stability analysis equation for the ADI method for two-dimensional Heat equation is 

follows:  

𝜉 =
(1 − 2𝑟𝑥 sin2 (

𝑝𝜋∆𝑥
2 )) (1 − 2𝑟𝑦 sin2 (

𝑝𝜋∆𝑥
2  ))

(1 + 2𝑟𝑥 sin2 (
𝑝𝜋∆𝑥

2 )) (1 + 2𝑟𝑦 sin2 (
𝑝𝜋∆𝑥

2  ))
 (29) 

Assuming the non-negative 𝑟𝑥 and 𝑟𝑦 and |𝜉| ≤ 1  makes the ADI method unconditionally stable for ∆𝑡  value 

and makes ADI method convergent with second-order accuracy. 

A 3D surface plot has been shown in Figure 6 from the numerical approximation of two-dimensional Heat 

equation (2) based on ADI method using same configuration that of CN.  

 

Figure 6. Surface plot of 2D Heat equation using ADI method. 
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5. Conclusions  

The heat equation, which is also well popularly known as Heat Diffusion equation, has many applications in 

various fields such as Physics, Finance, Engineering, Astronomy, etc. For the purpose of simulation in computer 

code, the differential equations are discretized using finite difference methods for the numerical approximations.  

In this work, the two-dimensional Heat equation (2) has been discretized using four different finite difference 

methods. The one-dimensional equation has been solved for heated-rod analytically, the examples of two-

dimensional equation has been shown to be approximated for a square plate of size 𝐿 × 𝐿. The finite difference 

schemes used in this study include explicit Forward Euler (FTCS), implicit Backward Euler (BTCS), Crank 

Nicolson (CN) and Alternating Direction Implicit (ADI) method. The FTCS method approximates the two-

dimensional equation in an explicit way. The discretization of two-dimensional using FTCS method has some 

limitations that ∆𝑡 must be chosen smaller, it cannot be chosen 1 or greater than 1 for numerical approximations. 

It is first- order accurate in time second-order accurate in space. The BTCS method of discretization for the two-

dimensional Heat equation has been shown to be unconditionally stable, the stability analysis for the BTCS was 

discussed. The BTCS method is an implicit method. The CN method has been discretized, the stability analysis 

for this scheme shows that the CN scheme is unconditionally stable. The CN scheme is an average of FTCS and 

BTCS and therefore it is more stable but slow in numerical approximation due to the use of large matrices for 

more complex problems. The CN method is second-order accurate in time and space. It must be noted that the 

BTCS and CN methods carry the system of equations which are solved using the LU decomposition or Conjugate 

Gradient method. The ADI method is stronger version of CN method and the its discretization scheme is based 

alternating direction of implicit and explicit using half-spaced derivative. This ADI method is fast in comparison 

of CN method and is unconditionally stable like CN method. The ADI method can be used for more complex 

problems and the numerical approximations can be obtained very fast. This method can also be carried out for 

the parallel computing. For each finite difference scheme used in this study, a 3D surface plot has been shown. 

These are generate using different approaches FTCS, BTCS, CN and ADI, the plots seem alike but are based on 

different techniques. There are various finite difference schemes for discretization of differential equations. The 

choice of these schemes can best be shown fit for parabolic, elliptical or hyperbolic differential equations based 

on the stability and convergence. Thus, the stable and time-efficient numerical results can be obtained.  
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