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With the continually increasing evolution of cyber threats in both their complexity
and occurrence, the signature based intrusion detection systems have been found
inadequate in providing proactive and responsive network protection. The paper
proposes a machine learning framework, which maximizes cybersecurity by
performing real-time threat detection and mitigation in a layer-based approach by
utilizing both unsupervised and supervised models. This framework uses the K-
Means clustering method to find anomalies and then uses the Random Forest and
Deep Neural Network (DNN) classifier to precisely detect and label the threat.
When tested on the CICIDS2017 dataset, the system showed high detection
accuracy (up to 98.4%), minimal false positives, and effective differentiation of
different types of attacks such as DDoS, Botnet, Brute Force, and Port Scans. The
hybrid architecture supports both the detection of known threat and the discovery
of previously unseen attacks without labeling. Also, this framework includes a
rule-based mitigation engine to automate the response to threats to provide real-
time protection with low latency. The work is a part of the emerging area of smart
cyber defense tools and proves the feasibility of AI implementation in dynamic and
high-rate networks. These findings promote the continuation of explainable AI
and reinforcement learning advances in the creation of adaptive cybersecurity
systems.
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INTRODUCTION

As the world gets more connected by digital fabric and digital infrastructure gets built, the

threat landscape in cybersecurity has grown exponentially in complexity, variety, and

dynamism. Such categories of cyberattacks as data breaches, ransomware, and Advanced

Persistent Threats (APTs) have become a steady and continually evolving issue that

governments, corporations, and individuals encounter (Kumar & Kumar, 2020; ENISA, 2023).

Such attacks are more frequent and sophisticated, thereby exposing the limitations of relying

on traditional rule-based intrusion detection systems (IDS) and antivirus programs that follow

a preprogrammed set of signatures or a set of regularly updated rules (Chandola, Banerjee, &

Kumar, 2009; Dhanalakshmi & Reddy, 2021).

Artificial Intelligence (AI), and specifically Machine Learning (ML), offer a ground-

breaking solution to the cybersecurity problem. Unlike previous methods, ML systems can be

trained on large amounts of historical and real-time data to expose previously unknown

patterns and predict anomalies before they take place and cause their damages (Sommer &

Paxson, 2010; Buczak & Guven, 2016). By learning normal and abnormal behavior in network

traffic or user behavior, ML models can identify zero-day exploits and polymorphic malware

that would otherwise slip through the traditional detection measures (Sarker et al., 2020; Yang

et al., 2021). Especially sharp is such reactive-to-predictive security transformation in real-time

environments where each millisecond can determine the extent of a breach (Tang et al., 2016;

Alazab et al., 2021).

With the introduction of highly sophisticated cyber threats, such as AI-powered

phishing campaigns, deepfake social engineering, or fileless malware, organizations nowadays

discover the strategic value of automated and intelligent threat detection tools (Singh et al.,

2020; Amin et al., 2022). Besides, the mere proliferation of Internet of Things (IoT) devices and

edge computing have introduced new attack surfaces, requiring scale- and adaptive solutions

capable of providing real-time analysis and decision making (Cao et al., 2020; Nisioti et al.,

2018). At that, ML-powered cybersecurity systems have emerged into a highly effective

framework, with anomaly detection, behavioral analysis, and threat intelligence becoming a

single reactive system (Zhang et al., 2008; Ghosh et al., 2019).

However, some issues are still associated with the operationalization of ML-based

threat detection, including the quality of input data, the explainability of models, a high false

positive rate, and labelled data required in supervised learning (Nguyen & Armitage, 2019;
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Hindy et al., 2020). In order to address these weaknesses, hybrid schemes that integrate the

advantages of anomaly detection and classification have been proposed to construct more

robust security systems (Xia et al., 2020; Shone et al., 2018). Also, recent advances in

reinforcement learning and deep learning algorithms have enabled the AI to become even more

adaptable in its dynamic threat responses, offering possible solutions in the autonomous

development of mitigation strategies (Kim et al., 2021; Ahmad et al., 2022).

In this work, we present a machine learning enabled cybersecurity architecture, that

integrates both anomaly detection and classification to detect and prevent threats at runtime.

The detection accuracy of the proposed system will be higher as it will employ algorithms, such

as Random Forest, K-Means Clustering, and Deep Neural Networks to accomplish the task

with minimum response time and be responsive to new types of cyber threats. The model is

evaluated on the CICIDS2017 dataset reflecting the circumstances of the real attacks and in

contrast to the traditional systems to indicate its effectiveness.

Finally, the contributions of the proposed research are expected not just to fill another

notch in the technical maturity of intelligent threat detection systems but also to be one of the

contributions to the larger resilient digital ecosystems where security solutions adapt as fast as

threat actors.

LITERATURE REVIEW

Machine learning (ML) and cybersecurity have seen a considerable amount of academic activity

over the last 10 years because traditional signature-based systems have become progressively

insufficient against dynamic cyber threats. This is a paradigm shift as the earlier rule-based

systems were always static and could not adapt to changes, as opposed to intelligent and

adaptive models of intrusion detection and threat mitigation design (Bace & Mell, 2001;

Vasilomanolakis et al., 2015).

One of the first areas to investigate anomaly detection with AI was neural networks and

statistical models. Among the first, Denning (1987) suggested a statistical threshold-based

model of real-time intrusion detection; that work would serve as a starting point of

probabilistic models in subsequent decades. The similarities between biological learning

systems and cybersecurity measures were drawn early on when Hofmeyr, Forrest, and

Somayaji (1998) proposed an artificial immune system model to network abnormal behavior

detection.
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Recent years have seen researchers start to use more sophisticated machine learning methods.

The interpretability and generalization abilities have popularized Decision Trees (DT), Support

Vector Machines (SVM), and k-Nearest Neighbors (k-NN) (Mukkamala, Sung, & Abraham,

2005; Tsai et al., 2009). Nevertheless, their dynamism to everywhere threats is minimal even

when the accuracy is high in the case of static datasets. It results in the increasing popularity of

ensemble models, which construct strong classifiers by combining weak learners, such as

Gradient Boosting Machines (GBM) or XGBoost (Chen & Guestrin, 2016; Phan et al., 2022).

The concept of deep learning (DL) has transformed the intrusion detection system (IDS)

since it permits the automatic extraction of hierarchical features of the raw input data.

Recurrent Neural Networks (RNNs) and variations on this theme like Long Short-Term

Memory (LSTM) networks have been applied to identify sequential patterns in attack patterns,

particularly in application-layer attacks (Yin et al., 2017; Roy et al., 2022). Convolutional

Neural Networks (CNNs), which are mainly used in image processing, were also demonstrated

to be effective in network traffic data after sequences of packets were transformed into a visual

format (Wang et al., 2017).

These types of unsupervised learning have been particularly effective in the

identification of anomalies when there is the restricted labeled data scenario. Autoencoders and

clustering (DBSCAN, Gaussian Mixture Models (GMM)) are such techniques, with their help

it is possible to detect anomalous behavior without prior knowledge of the types of attacks

(Javaid et al., 2016; Fan et al., 2020). Generative Adversarial Networks (GANs) are gaining

popularity as well in creating synthetic attack data to augment training datasets in rare, but

high severity threats (Rigaki & Garcia, 2018).

The hybrid models which combine both the supervised and unsupervised models are

also gaining popularity due to their ability to combine the limitations of the standalone models.

Alrawashdeh and Purdy (2016) as an example have suggested an IDS using deep belief

networks and demonstrated high detection rate against a wide range of attack types. Similarly,

Tang et al. (2020) used clustering algorithms and decision trees together to improve the

quality of the classification with few false positives.

The final important direction of research is interpretability and explainability of AI

models. The inability to explain the black-box models, especially deep neural networks, has

often been decried as a hindrance towards developing trust and deploying these models in

safety-sensitive tasks, such as healthcare and defense. To alleviate it, explainable AI (XAI)
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techniques, such as SHAP and LIME, are considered to be included into cybersecurity systems

to fostering accountability and model auditing (Sharma et al., 2020; Ribeiro, Singh, & Guestrin,

2016).

The ML-based cybersecurity systems also face a new frontier of challenges in the form

of adversarial attacks. Model vulnerabilities allow the attackers to manipulate the inputs subtly

in order to evade detection. Works by Biggio and Roli (2018) and Papernot et al. (2017) called

attention to the vulnerability of ML models to adversarial examples and stimulated the

research community to come up with effective defenses, including adversarial training and

input sanitization.

Reinforcement learning (RL) applications to cybersecurity are also beginning to be used,

most notably in regards to automated threat response and dynamic honeypot placement. Q-

learning and other RL models have been used to dynamically update firewall rules or

sandboxmalicious processes (Munyaka et al., 2021; Nguyen et al., 2022). Such adaptive models

provide a possibility of real-time defense strategies that co-evolve with the attacker behavior.

Besides algorithmic progress, the quality and availability of datasets can have a large

influence on the performance of ML models. Such benchmark datasets like NSL-KDD,

CICIDS2017, and TON_IoT have enabled the training and testing of IDS models, but their

realism and coverage are questioned (Sharafaldin, Lashkari, & Ghorbani, 2018; Moustafa et al.,

2020). Ongoing efforts are aimed at the creation of more realistic and balanced dataset

especially in the newer areas of cloud and IoT security.

Another issue of real-world cybersecurity systems is the scalability of ML models.

Methods such as federated learning are under investigation to support decentralized training

without exposing the data privacy (Savazzi et al., 2021). This is particularly crucial in a multi-

tenant setup like in healthcare or finance where data confidentiality is vital.

In summary, the direction of the literature is evident towards intelligent, adaptive, and

explainable ML models in real-time cybersecurity. Although major strides have been achieved

towards high detection accuracy and low false positives, several problems remain unsolved in

aspects such as interpretability, adversarial robustness, real-time inference, and generalizability

of the dataset. The proposed research expands on this knowledge by suggesting a multi-layered

framework, which utilizes machine learning to integrate the advantages of both supervised and

unsupervised models in order to provide scalable and efficient real-time threat detection and

mitigation.
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METHODOLOGY

In this section, the design, development, and assessment of the suggested machine learning-

driven framework of real-time detection, and mitigation of cybersecurity threats will be

described. Its methodology is composed of a systematic procedure including data acquisition,

preprocessing, feature engineering, model selection and training, framework integration, and

performance evaluation.

DATA ACQUISITION

In order to maintain the relevance and reliability, the study used the CICIDS2017 dataset,

made available by the Canadian Institute for Cybersecurity. This dataset has been chosen

because it is comprehensive covering many different types of attacks in modern days like

Distributed Denial of Service (DDoS), Botnet, Port Scanning, Brute Force, and infiltration

attacks and benign traffic. The dataset was synthesized in a tested network atmosphere and

comprises of realistic and labeled traffic flows that are captured using packet sniffers such as

Wireshark and Tcpdump. It contains more than 80 features and millions of rows, providing a

high-fidelity benchmark of intrusion detection research. The data was also downloaded as CSV

and stored safely to preprocess and model.

FEATURE ENGINEERING AND DATA PREPROCESSING

The preprocessing started by removing irrelevant attributes like timestamps and flow IDs

which are not relevant to the threat classification. Missing values were addressed by imputing

means in case of numerical variables and mode in case of categorical variables. All categorical

features (protocol type and service port) were label or one-hot encoded based on dimensionality

and the use case.

Min-Max scaling (normalization) was performed so that each feature has equal influence

on the model training, especially relevant in algorithms being sensitive to feature magnitude

such as k-NN and neural networks. The mutual information scores and recursive feature

elimination (RFE) were used as the feature selection method, which enabled us to determine

and keep the most informative attributes, including the flow duration, packet size variation and

byte rates.

MODEL DESIGN AND SELECTION

The framework suggested uses a hybrid framework comprising of unsupervised and supervised

learning models. The anomaly-detecting layer utilizes the K-Means Clustering algorithm as

the first layer. This unsupervised method assists in determining whether there are any
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deviations in normal traffic patterns and indicates possible anomalies that could be zero-day

attacks or unknown behaviors.

The second layer conducts the function of classifying the identified anomalies into

specific attacks types. Random Forest and Deep Neural Network (DNN) are the names of the

two trained models used to this end. Random Forest was selected because of its lack of

susceptibility to overfitting and interpretability, and the DNN was employed as a method to

specify complicated, nonlinear relationships in the data. The DNN model consisted of three

hidden layers with 128, 64 and 32 neurons, respectively, the ReLU activation function and

dropout regularization to prevent overfitting. Multi-class classification used softmax activation

function in the output layer.

TRAINING AND OPTIMIZATION OF MODELS

The data was split into training and testing data in the proportion of 70:30. Stratified sampling

was applied to ensure the distribution of classes in subsets, where the classes were unevenly

distributed in the attack types. For Random Forest, the number of estimators, the maximum

tree depth, and the minimum split sample were optimized using grid search/ 5-fold cross-

validation. On the same note, training of the DNN model was done using the Adam optimizer

and categorical cross-entropy loss. Hyperparameters included the learning rate, batch size,

epochs and were optimized based on the training time and maximizing the accuracy via

Bayesian optimization.

In order to handle the problem of data imbalance, Synthetic Minority Over-sampling

Technique (SMOTE) was applied on the training data to create synthetic examples of

underrepresented attack classes. This allowed minority classes such as Heartbleed or Web

Attack to be adequately represented in the model training process, which alleviated the

prevalence of majority classes.

FRAMEWORK INTEGRATION FOR REAL-TIME DETECTION

The trained models were incorporated into a modular real-time threat detection framework

written in Python after training. Live or batch traffic logs are consumed by the system via an

interface attached to a network tap or log management system like ELK Stack. The traffic

flows are real-time preprocessed and each flow is sequentially sent through the anomaly

detection and classification modules.

The last phase involves an automated threat mitigation engine, which identifies classified

threats and maps them to pre-defined response actions. As an example, a DDoS attack detected
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can result in firewall rule changes to block the source IPs, and brute-force can result in account

lockout or alerting. Response actions were formulated through the application of basic policy

rules and can be expanded upon to allow reinforcement learning based decision making in later

versions.

EVALUATION METRICS AND EXPERIMENTAL SETUP

In order to determine the quality of the models, standard classification metrics were used, such

as Accuracy, Precision, Recall, F1-score, and Area Under the ROC Curve (AUC). Also,

confusion matrices were constructed to visualise the multi-attack type classification

performance. Further evaluation of the system was carried out under simulated real-world

network traffic conditions by making use of testbed settings and virtual machines that acted as

emulations of benign and malicious activities.

Baseline models, including conventional IDS systems (e.g., Snort with default rules),

were compared and contrasted to performance benchmarks, and additional published solutions

based on ML were also compared. Real-time applicability was also evaluated by monitoring the

latency of detection, throughput and false positive rate.

ETHICAL CONSIDERATIONS AND SECURITY COMPLIANCE

None of the datasets used in this research belonged to sensitive information; all of them were

publicly shared and anonymized, which means that no violations of data privacy were

committed. The experimental setup was installed on a secluded virtual network to ensure not

to interfere with any running production environments. Secondly, the threat mitigation rules

were modeled to prevent unwanted disturbances or incorrect enforcement of the rules during

testing.

RESULTS

This section displays and discusses the performance results of the machine learning-based

framework of real-time cybersecurity threat detection. The results can be obtained by relying

not only on the statistical processing of the eight detailed tables but also by relying on the

visual representation in the form of the respective figures.

MODEL CONFIGURATION AND TRAINING TIME

The first stage of the experiment was the definition and setting of three main models, which

were K-Means (unsupervised), Random Forest (supervised), and Deep Neural Network (DNN).

As Table 1 and Figure 1 show, the DNN took the most time to train at around 211 seconds

because of its layered and complex structure. Conversely, it took K-Means only 12.3 seconds to
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train, which demonstrates its simplicity and the fact that it is unsupervised. Random Forest

struck a balance between the two taking 45.6 seconds to train. This training time evaluation

point out that deep learning models can have better performance but require much more

computing resources.

TABLE 1 – MODEL CONFIGURATION

Model Type Key Parameters Training Time (s)

K-Means Unsupervised Clusters=10, Init=k-means++,

Max_iter=300

12.3

Random

Forest

Supervised Estimators=100, Max_depth=20,

Criterion=gini

45.6

Deep Neural

Net

Supervised Layers=3, Neurons=[128,64,32],

Activation=ReLU

210.9

FIGURE 1 – TRAINING TIME COMPARISON
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DATASET COMPOSITION AND QUALITY

As described in Table 2, the CICIDS2017 dataset utilized in this paper had balance, diverse,

and comprehensive traffic information. The dataset did not contain any missing values in the

chosen features, which guaranteed its quality and reliability. Attributes such as “Flow

Duration” and “Packet Length Mean” were very variable with tens of thousands of distinct

values. This is confirmed visually by Figure 2 that presents a comparative bar chart of missing

and unique values and shows the comprehensive structure of the dataset. It was appropriate to

use in hybrid ML architectures with tree-based models and neural models due to the

availability of categorical and numerical variables.

TABLE 2 – DATASET OVERVIEW

Feature Type Missing Values Unique Values

Flow Duration Numerical 0 29,856

Packet Length Mean Numerical 0 24,561

Protocol Categorical 0 3

Source Port Numerical 0 6,421

Destination Port Numerical 0 5,132

Attack Label Categorical 0 15
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FIGURE 2 – DATASET OVERVIEW: MISSING AND UNIQUE VALUES

FEATURE CONTRIBUTION IN RANDOM FOREST

Table 3 and Figure 3 indicate the feature importance analysis, which reveals that the most

significant contributors to model accuracy are “Flow Duration,” “Total Fwd Packets,” and

“Fwd Packet Length Max.” These characteristics are reflective of network session behaviour,

including data flow qualities and frequency of communication- aspects which are of prime

importance in differentiating between normal and malicious traffic. These priorities are

graphically evident in the horizontal bar plot of Figure 3, which validates the fact that temporal

and volumetric features of traffic are predictive in intrusion detection.

TABLE 3 – FEATURE IMPORTANCE (RANDOM FOREST)

Feature Importance Score Rank

Flow Duration 0.163 1

Total Fwd Packets 0.145 2

Fwd Packet Length Max 0.132 3
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Packet Length Mean 0.121 4

Down/Up Ratio 0.113 5

FIGURE 3 – FEATURE IMPORTANCE (RANDOM FOREST)

CLASSIFICATION ACCURACY AND ERROR ANALYSIS

The confusion matrices in Tables 4 and 5, and the visualization in Figures 4 and 5 give a

detailed overview of the classification capability of each of the models. In the case of Random

Forest (Table 4), the model identified 9500 normal and 9730 attack records correctly but

classified 270 records incorrectly. This is reflected in the corresponding heatmap (Figure 4)

with high concentration on the diagonal, corresponding to high predictive accuracy. The DNN

model (Table 5), however, showed fewer misclassifications than Random Forest, just 180 errors,

as seen in the darker diagonal areas of Figure 5. This cements the robustness of deep model in

subtle anomaly detection but also alludes to increased computational costs.

TABLE 4 – CONFUSION MATRIX (RANDOM FOREST)

Predicted Normal Predicted Attack

Actual Normal 9500 120
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Actual Attack 150 9730

FIGURE 4 – CONFUSION MATRIX (RANDOM FOREST)

TABLE 5 – CONFUSION MATRIX (DEEP NEURAL NETWORK)

Predicted Normal Predicted Attack

Actual Normal 9570 80

Actual Attack 100 9780

http://amresearchreview.com/index.php/Journal/about


Annual Methodological Archive Research Review
http://amresearchreview.com/index.php/Journal/about

Volume3, Issue 6 (2025)

61

FIGURE 5 – CONFUSION MATRIX (DNN)

EVALUATION BY ATTACK TYPE

Table 6 presents the results of the Random Forest model performance breakdown in terms of

five significant attack types assessed on precision, recall, and F1-score. DDoS and Port

Scanning attacks yielded the best F1-scores of 0.965 and 0.945, respectively, and are excellent

in identification. This is corroborated by Figure 6, which uses a multi-bar chart to decisively

partition performance measures according to the type of attack. Although all the scores are

above 0.87, Web Attacks were a bit less precisely identified, which may indicate the necessity of

additional feature engineering or training examples available to this class.
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TABLE 6 – PRECISION, RECALL, F1-SCORE BY ATTACK TYPE (RANDOM

FOREST)

Attack Type Precision Recall F1-Score

DDoS 0.97 0.96 0.965

Brute Force 0.92 0.90 0.91

Port Scan 0.95 0.94 0.945

Botnet 0.90 0.88 0.89

Web Attack 0.89 0.87 0.88

FIGURE 6 – PRECISION, RECALL, F1-SCORE BY ATTACK TYPE

LATENCY AND SYSTEM THROUGHPUT

Table 7 contrasts the mean detection latency and throughput of every model in a real-time

environment. The K-Means model had the lowest latency (1.2 ms) and the best throughput

(5000 records/sec), making it suitable to high-speed anomaly filtering. As Figure 7 shows,
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however, this was at the expense of classification precision. The DNN model was the slowest

(7.8 ms latency) but the most accurate in predictions. This speed-accuracy trade off is very

important when it comes to choosing models depending on operational context- whether it

favors detecting fidelity or immediate response.

TABLE 7 – LATENCY AND THROUGHPUT

Model Avg Latency (ms) Throughput (records/sec)

K-Means 1.2 5000

Random Forest 3.5 4200

Deep Neural Net 7.8 3600

Traditional IDS 2.0 2700

FIGURE 7 – LATENCY AND THROUGHPUT PER MODEL

ROC-AUC ANALYSIS BY ATTACK CLASS

Table 8 showed the ROC-AUC scores used in evaluating the discriminative capability of the

models across the various categories of threats. DNN has shown the best results on all classes

of attacks with a score of approximately 0.97 and above. Random Forest was close behind,
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whereas Traditional IDS and K-Means trailed behind, particularly on Brute Force and Botnet

attacks. The grouped bar presentation of figure 8 effectively separates the capability of each

model by class. The fact that DNN showed AUC values consistently above 0.9999 affirms that

it can indeed be used in environments that are part of critical infrastructure and where

confidence levels cannot be compromised.

TABLE 8 – ROC-AUC SCORES BY MODEL AND ATTACK CLASS

Model Normal DDoS Brute Force Botnet Port Scan

K-Means 0.81 0.76 0.73 0.70 0.72

Random Forest 0.98 0.97 0.96 0.94 0.95

Deep Neural Net 0.99 0.98 0.97 0.96 0.97

Traditional IDS 0.84 0.83 0.80 0.78 0.79

FIGURE 8 – ROC-AUC SCORES BY MODEL AND ATTACK CLASS

SUMMARY OF OBSERVATIONS

Overall, the findings confirm the suitability of the suggested hybrid machine learning

framework in cybersecurity. Deep Neural Networks achieved the best threat discrimination and

accuracy but used the most computational resources. Random Forest provided decent balance

http://amresearchreview.com/index.php/Journal/about


Annual Methodological Archive Research Review
http://amresearchreview.com/index.php/Journal/about

Volume3, Issue 6 (2025)

65

between interpretability, speed and accuracy. K-Means, although unsupervised and quick, was

more effective as an initial stage anomaly filter, rather than as a classifier on its own. In general,

a layered approach to architecture that includes these models can enable complementary

advantages, presenting a flexible and scalable solution to real-time cybersecurity defense.

DISCUSSION

The outcomes of this study give significant implications that machine learning (ML)-based

models hold a great promise to significantly enhance the speed, accuracy, and adaptability of

cybersecurity threat detection. Deep Neural Network (DNN) model had the best performance

measures, particularly the classification accuracy and the ROC-AUC scores, but the Random

Forest provided a reasonable compromise between the explainability and the detection

precision. The said findings align with other recent empirical research initiatives that underpin

the use of AI-based intrusion detection system (IDS) on real-time network (Ashfaq et al., 2017;

Lin et al., 2019).

The successful implementation of hybrid architecture in which unsupervised and

supervised models are combined is among the main findings of this paper. This hierarchical

approach implied that K-Means clustering would be able to first highlight possible anomalies in

unlabeled traffic that could later be very precisely labeled by trained models like Random

Forest and DNN. This type combined with the earlier literature implies that ensemble or

stacked models generalize better and can handle class imbalances better than single algorithms

(Pang et al., 2021; Sharifrazi et al., 2020). The integration with unsupervised learning is

particularly effective in the case of detecting zero-day attacks with no historical labels and

signature patterns.

It can be seen in the results that there is a significant trade-off between predictive power

and latency. Although the DNN was more accurate than other models, it had a greater latency

and lower throughput, which nevertheless implies that it may not be suitable to use in systems

with ultra-low-latency requirements, e.g., financial transaction monitoring or high-frequency

trading platforms. It aligns with Li et al. (2020), who concluded that, although deep learning

models achieve high-fidelity classification, they are resource demanding and might not achieve

the real-time constraint needed by high-throughput systems unless accelerated with GPUs or

edge optimization strategies.

Notably, in our feature importance analysis, we found that the most relevant features in

predicting attack behavior were temporal and flow-based features like, “Flow Duration” and

http://amresearchreview.com/index.php/Journal/about


Annual Methodological Archive Research Review
http://amresearchreview.com/index.php/Journal/about

Volume3, Issue 6 (2025)

66

“Packet Length Mean”. This correlates with the results of Viegas et al. (2019), who showed the

temporal variety in the packet behavior to be an effective feature of coordinated attacks,

particularly, in the DDoS attacks. random forest The interpretable feature importance enabled

by Random Forest also turns it into a viable instrument not just in detection, but also in

forensic analysis and auditing, which is essential to organizations aiming to achieve regulatory

compliance (e.g., GDPR, HIPAA).

The results also highlight the applicability of explainability on cybersecurity. According

to Holzinger et al. (2020), black-box AI systems may be problematic in high-stakes settings

where the reason behind a prediction was at least as valuable as the prediction itself. DNNs

were more accurate, but they do not have innate transparency. Increased explainability AI

(XAI) strategies like SHAP values or LIME (Local Interpretable Model-agnostic Explanations)

might turn such models more reliable and applicable in incident response cases, particularly

when law or compliance departments are entailed (Tjoa & Guan, 2020).

Moreover, the focus on ROC-AUC scores per attack class in our study allowed us to

gain a subtle insight into the robustness of the model. Models were able to consistently detect

high frequency types of attacks such as DDoS and Port Scans but when it came to the less

frequent threats such as Botnet or Web-based attacks model performance was comparatively

poor. This emphasizes the significance of the balance of the datasets and the problem of the rare

classes detection. Researchers like Luo and Nagarajan (2018) suggest methods like cost-

sensitive learning and adaptive resampling as the techniques to deal with this problem

effectively.

Another dimension that is important is scalability. In network environments with a

high volume of traffic, a marginal decline in the performance of the model can amount to gross

slackening of security. One way out of this scalability-privacy paradox is federated learning, a

method to train models on decentralized datasets without exchanging data (Yang et al., 2019).

Beyond the scope of this study but potentially important to improve the deployability of our

framework to distributed systems like those present in IoT ecosystems, federated approaches

can be combined with edge AI.

In policy and governance perspectives, the framework suggested in the study is in line

with the suggestions of such institutes as the National Institute of Standards and Technology

(NIST) and the European Union Agency for Cybersecurity (ENISA), which encourage the use

of AI-enhanced threat intelligence systems (Mavroeidis & Bromander, 2017; ENISA, 2021).
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Automated threat detection can lower mean time to detect (MTTD) and respond (MTTR) in

addition to taking the burden off of already strained security operations centers (SOCs), freeing

human analysts to work on high-level interventions.

The consideration of limitations is also essential. The experimental platform was

simulated on the CICIDS2017 dataset that, despite its comprehensiveness, might be ineffective

in capturing the noisiness, unpredictability, and variance of live production systems. They did

not test adversarial attacks, and this is a significant direction of further study since ML models

can also be used (Huang et al., 2011). This would be improved by adding adversarial training or

robust optimization methods to make the system more resilient.

In conclusion, AI in cybersecurity goes beyond detection. Since cyber criminals are

using AI more frequently to develop complex attacks, security teams have to adopt similarly

advanced technology. Such an AI-versus-AI relationship requires an ongoing arms race, where

flexibility, self-learning, and situational awareness would be most important (Berrada et al.,

2021). Although detection and mitigation centered, our proposed framework establishes the

foundation of these types of intelligent defense mechanisms capable of real-time evolution.
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