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opens up new opportunities in time-series forecasting. The purpose of the work is
to investigate how three variations of RNN-based models, such as Simple RNN,
Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), perform
on the task of predicting the direction of the stock market using the historical data
of the S&P 500 index. The models were trained and tested through a pure
experimental design that factored in a 60-day look-back window, normalization,
and sequence modeling across diverse performance measures that include Mean
Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and Directional Accuracy (DA). This is rather clear in the findings that the
LSTM and GRU networks are significantly superior to the Simple RNN in
predictive power and robustness to varying market environments. LSTM in
particular generalized the most, over 81 percent of its predictions fell within 2
percent error margin and directional accuracy of 72.4 percent on the test set. In
addition to enhancing the applicability of deep RNN architectures in financial
prediction, the results also imply that they can be applicable to algorithmic trading
and investment decisions systems. Future research directions might be observed in
the sphere of multi-modal data source integration and model interpretability,
which would allow to advance the domain of deep learning applicability in finance
further.
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INTRODUCTION

Stock market prediction has been considered as one of the most significant, yet difficult, issues
in the area of financial engineering and data science due to the non-linear and highly non-
stationary dynamics of the stock market when reacting to various exogenous influences
(Atsalakis & Valavanis, 2009; Fama, 1965). Accurate forecasting of the stock price can be highly
valuable, and the information can be incorporated into the enhancement of trading strategies
and investment decision-making and risk management (Chen et al., 2015; Patel et al., 2015).
However, the unpredictable nature of the financial markets dominated by such powerful factors
as the psychology of investors, geopolitical developments, macroeconomic releases, etc.,
continues to pose a challenge to the successful implementation of the classic forecasting models
(Box & Jenkins, 1976; Kim, 2003).

Among the first approaches to stock market forecasting were linear time-series models
such as AutoRegressive Integrated Moving Average (ARIMA) and Exponential Smoothing
techniques (Hyndman & Athanasopoulos, 2018; Nelson et al., 1999). Despite providing a
foundation of the time-series analysis, the assumptions of stationarity and linearity are not
typically satisfied in real-world stock price series, which are non-stationary and chaotic (Cont,
2001; Fama, 1965). Secondly, the models are poor in modelling long term temporal
characteristics and non-linear interactions of market factors (Zhang et al., 1998).

Since the introduction of machine learning (ML) techniques, the financial forecasting
issue underwent a paradigm shift (Huang et al., 2005; Tsai & Hsiao, 2010). The Support Vector
Machines (SVM), Decision Trees and the ensemble methods such as the Random Forests
showed to be superior in predictive accuracy when compared to the classic statistic based
models (Atsalakis & Valavanis, 2009; Ince & Trafalis, 2006). However, their standard
formulations usually treat financial time-series data as independent samples and, therefore,
overlook the temporal dependencies that are most crucial in the context of learning the
behavior of stock markets (Bao et al., 2017).

A sub-branch of machine learning Deep learning (DL) where neural networks have
numerous layers has demonstrated unprecedented performance on a variety of sequential data
tasks (LeCun et al., 2015; Goodfellow et al., 2016). Recurrent Neural Networks (RNNs) in
particular are configured to learn sequential data, whereby they retain internal state, which

summarises the information of the previous time steps (Rumelhart et al., 1986). It especially
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makes the RNNs extremely time-series prediction, in which the past values affect the future
patterns (Lipton et al., 2015).

Despite the theoretical appeal of standard RNNs, three major problems exist with
standard RNNs: vanishing and exploding gradients and learning long-term dependencies
(Pascanu et al., 2013). In order to overcome these limitations, later architectures have been
suggested, like the Long Short-Term Memory (LSTM) networks (Hochreiter & Schmidhuber,
1997) and Gated Recurrent Units (GRUs) (Cho et al., 2014). Presented LSTM networks have a
notion of gating that helps them keep information in a long time horizon, yet GRU suggests a
simplified structure and offers an equivalent outcome (Chung et al., 20145 Greft et al., 2017).

The more recent research in the domain showed the success of LSTM and GRU models
in financial prediction. Just to give an example, Fischer and Krauss (2018) discovered that the
LSTM networks severely outperformed the classical models and the feedforward neural
networks in predicting the directional movement of the S&P 500 index. Likewise, Nelson et al.
(2017) discovered that the LSTM-based models outperformed the traditional approaches in
terms of accuracy and robustness in stock price forecasting. Besides that, Bao et al. (2017)
introduce a hybrid deep learning model, on which wavelet transforms and LSTM networks are
implemented to enhance the results on stock price prediction.

Furthermore, unlike the traditional approaches, the models with RNN can learn long-
term dependencies and non-linear relations that are present in the stock market data (Sezer et
al., 2020). Such modellability is especially practical because the cost of the stocks is driven not
only by the long-term tendencies but also by the short-term oscillations (Zhang et al., 2020).
Moreover, deep learning models can be substantially flexible, i.e., additional features, including
technical indicators, sentiment analysis, or macroeconomic variables, among others, can be
input, and the forecasting performance can be improved further (Li et al., 2019; Ghoshal &
Roberts, 2018).

Yet, there are still some issues concerning the application of RNN to the stock market
prediction. Overfitting is a problem, as there is very little trusted financial data, and stock
prices have a large noise-to-signal ratio (Bukhari et al., 2020). Furthermore, the interpretability
of deep learning models leaves much to be desired because the models are considered black-box,
which means that the finance professionals would struggle to trust the models and use them in

production (Guidotti et al., 2018). In addition, the financial markets are very dynamic, and thus
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demand models that are flexible enough to adjust to the new market conditions and unobserved
data distributions (Xiong et al., 2015).

Based on these, the proposed research study would entail a systematic exploration of the
application of the RNN-based networks ie., LSTM and GRU networks in stock market
prediction. We are going to attempt to gauge the quality of prediction of these models and
investigate their chances of real-life applicability in financial analytics with the advantage of a
well-designed experiment and a broad spectrum of evaluation criteria. The study gives the
ever-increasing literature on deep learning in the financial foresight and offers practical
implications to the researcher and practitioner in the area.

LITERATURE REVIEW

Stock market forecasting accurate stock market prediction has been an area of active
interdisciplinary research, involving economics, statistics, computer science, and artificial
intelligence (AI). Traditionally, most research on forecasting in the financial sphere has utilized
classical statistical models, yet over the past few years, the development of deep learning (DL)
has led to a paradigm shift in the process and potential of time-series forecasting to stock
prediction (Ballings et al., 2015; Fischer et al., 2023).

Financial modeling has long been based on classic time-series forecasting models that
include Autoregressive (AR), Moving Average (MA), ARIMA, and Vector AutoRegression
(VAR) (Hamilton, 1994; Lutkepohl, 2005). One of the key assumptions made by these models is
that of linearity and stationarity which cripples their potential in dealing with complex volatile
non-linear dynamics of financial markets (Campbell et al., 1997; Harvey, 1990). Even though
these models are computationally efficient and interpretable, they are not eftective in terms of
long-term dependencies and sudden regime shifts in stock price dynamics (Engle & Patton,
2001).

Trying to address the shortcomings of the linear models, scholars proposed nonlinear
models like Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models and
its extensions (Bollerslev, 1986; Glosten et al., 1993) which modeled volatility clustering better,
a recognized characteristic in financial time series (Cont, 2001). Nevertheless, GARCH based
models continue to miss the mark in terms of their capability to estimate complex temporal
dependencies, which evolve on long time horizons.

The advent of machine learning (ML) made finite difference equations like Support Vector
Machines (SVM) (Tay & Cao, 2001), k-Nearest Neighbors (NN) (Zhang & Zhou, 2004), and
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Extreme Learning Machines (Huang et al., 2012) to perform better on financial forecasting.
These techniques exploit their capacity to capture nonlinear relationships without a priori
specification of the relationship among the variables (Atsalakis & Valavanis, 2009). However,
they tend to overlook the sequence and temporal nature of stock market data since they are
initialized on fixed feature vectors, rather than time-series sequences (Henrique et al., 2019).

This has changed with the introduction of deep learning, which has architectures
specifically capable of capturing sequential dependencies and learning complex nonlinear
features directly on raw data (Goodfellow et al., 2016; Zhang et al., 2021). Convolutional
Neural Networks (CNNs), which were initially developed to operate on images, have also been
used in stock market prediction after time series were considered as pseudo-images (Sezer &
Ozbayoglu, 2018). However, regardless of the encouraging findings, CNNs inherently struggle
to represent long-term spatial dependencies because of their receptive field (Huang et al., 2020).
In comparison Recurrent Neural Networks (RNNs) are designed precisely to model sequential
data. Elman (1990) proposed RNNs, with feedback connections that allow them to remember
information across time steps, and therefore they can learn time-dependent patterns.
Unfortunately, vanishing and exploding gradients were severe training issues of early RNNs,
extremely constraining their potential to perform long-term dependency learning (Bengio et al.,
1994).

This bottleneck was solved when Hochreiter & Schmidhuber (1997) suggested the Long
Short-Term Memory (LSTM) networks that incorporate gated units that selectively inhibit or
allow information to pass through. world (Gers et al., 2000) since then LSTMs have been the
de facto standard in time-series prediction in many areas. Numerous studies found that they
perform better compared to traditional methods of financial forecasting (Bao et al., 2017; Rout
et al., 2020).

Alongside LSTM, there is also an introduction of Gated Recurrent Units (GRU) (Cho
et al., 2014) which are simpler in structure and have fewer parameters yet exhibit the same
level of performance (Yin et al., 2017). Their applicability in recent financial research considers
the fact that GRU can be trained quickly and can rival other models based on their forecasting
abilities (Ntakaris et al., 2019).

Empirical studies demonstrate that RNN-based architectures are effective in capturing
temporal dependencies that exist in stock market time series. Qin et al. (2017) came up with

attention-based RNN on time-series forecasting which improved the model interpretability
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with the important time steps indicated. Their model exceeded normal LSTM and GRU
models in precision and stability. Similarly, Huynh et al. (2017) applied LSTM with wavelet
transforms to stock price prediction tasks and demonstrated it to be significantly more
successful at capturing both short-term volatility and long-term trend.

More recent work also considers hybrid architectures, using RNNs together with CNNss
or attention. Kim & Kim (2019) introduced a CNN-LSTM hybrid model which combined local
pattern extraction through convolution with the modeling of temporal dynamics using LSTM,
and demonstrated state-of-the-art results on stock price prediction tasks. Zhu et al. (2022)
brought Transformer architectures, originally designed in the NLP domain, to stock prediction
and surpassed traditional RNNs on several benchmarks due to their self-attention mechanism
which can eftectively model both short- and long-range dependencies.

Furthermore, multi-feature strategies using technical indicators, trade volumes, and
outside sentiment information are getting famous. Xu & Cohen (2018) demonstrated that the
LSTM models with the sentiment of the news greatly outperform the baseline models in terms
of forecasting accuracy. On the same note, Akita et al. (2016) incorporated an image of charts
and quantitative characteristics in a deep learning model to enhance stock returns forecasting.

Reinforcement learning (RL) with deep learning is another promising direction. Deng
et al. (2016) applied deep reinforcement learning to develop trading strategies on top of LSTM
predictions, focusing on models that can optimize buy/sell decisions, not only stock price
prediction.

But there are still hurdles. interpretability remains a significant limitation of RNN-
based models which are considered to be a black box (Molnar, 2022). Some current proposals to
resolve this are attention mechanisms (Qin et al., 2017) and SHAPE (SHapley Additive
exPlanations) values (Lundberg & Lee, 2017), though more work is required before either are
regulatory-compliant and ready to be deployed in financial institutions (Samek et al., 2017).
Generalizability is another restriction. Financial markets are very dynamic, and models fitted
on the past data might not generalize in the new market regime (Lopez de Prado, 2018). Such
methods as transfer learning and continual learning are explored to resolve this problem
(Borovykh et al., 2017).

To conclude, the LSTM and GRU models are a substantial improvement over the
classical statistical and ML models in stock market prediction, but according to the literature,

there is no one single architecture that will uniformly outperform in all financial forecasting
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problems. The most promising directions of future research seem to be hybrid models,
attention mechanisms, and multi-source data integration (Lim & Zohren, 2021). Next, model
interpretability and dealing with model adaptability to market changes are open research
problems that are important to pursue.

METHODOLOGY

DATA COLLECTION AND SOURCES

The project is based on historical stock market data and aims to explore the forecasting
performance of Recurrent Neural Network (RNN) architectures, including Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) networks. The data is daily values of a
large market index, S&P 500, between January 2010 and December 2023. The information was
gathered using Yahoo Finance API that offers wide-ranging and openly available stock market
data. The next features were extracted per trading day: Open price, High price, Low price,
Close price, and Trading Volume. The mentioned attributes have been thoroughly employed in
literature because they summarize essential features of market behavior (Patel et al., 2015;
Fischer & KRrauss, 2018).

To assure the strength of the model assessment, the data was cleaned and preprocessed
to deal with missing or incorrect values. Forward fill techniques were used to impute any
missing values as it is a standard practice with time-series data (Little & Rubin, 2019). The
interquartile range (IQR) analysis was used to identify outliers, which were however kept, as
extreme market incidents are part and parcel of financial prediction and cannot be eliminated
randomly (Chong & Ng, 2008).

DATA PREPROCESSING AND FEATURE ENGINEERING

Time-series financial data is highly non-stationary and this presents a learning problem to
neural networks. Thus, first of all, all numerical features were normalized by Min-Max scaling
to make sure they are in the range [0,17. Such normalization is crucial especially in the case of
RNNs, which are vulnerable to the changing scales of input values (Zhang et al.,, 2021). Also,
the closing prices were calculated in terms of log returns, an alternative form of expressing
percentage changes that is more stable and stationary than raw price values (Kim & Kim, 2019).
A sliding window was used in order to model the dependencies between the time points. In this
method one generates overlapping series of data points, each series having a specified number
of contiguous trading days (the "look-back" period). Regarding the look-back period, in the

current research, empirical testing and past literature indicate that the window of 50-100
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trading days is effective in capturing both short-term and medium-term trends in the market
(Qin et al,, 2017; Huynh et al.,, 2017). Every 60 days input sequence predicted the closing price
of the next trading day.

The dataset was separated into training and testing sets with 80/20 time split to reflect
more real-world conditions of making forecasts, where the model is fitted on the historical data
and then tested on the unseen future data. Noteworthily, the split was not subjected to any
shuftling since time-series modeling requires the preservation of temporal order to prevent data
leakage (Makridakis et al., 2018).

MODEL ARCHITECTURES

Three deep learning models were used and compared, including a baseline Simple RNN, LSTM
network, and GRU network. The Simple RNN was used as a baseline model to illustrate the
advantages of more complicated RNN versions. TensorFlow and Keras libraries were used to
build the LSTM and GRU models, making them reproducible and scalable.

Both the GRU and LSTM networks had two recurrent layers and 50 units in each layer.
Such depth was chosen due to earlier results that deeper architectures ICT capture more
complicated temporal dynamics without risking too much overfitting (Greff et al., 2017; Rout
et al., 2020). The last recurrent layer was superseded with a fully connected Dense layer having
a solitary output neuron, which matched the anticipated closing price. The activation functions
were selected adequately; the recurrent layers were equipped with hyperbolic tangent (tanh),
which can learn normalized financial data sequences better (Goodfellow et al., 2016).

Dropout regularization was also introduced between the recurrent layers to avoid
overfitting (dropout rate 0.2) based on good practices in recent literature (Gal & Ghahramani,
2016). Also, Early Stopping was used in the training to stop the process when the validation
loss has stopped decreasing, thus providing the best model generalization without wasting
training cycles.

TRAINING PROCEDURE

The training of all models was done with the help of the Adam optimizer, which is a gradient-
based optimization algorithm and which incorporates the benefits of Adaptive Gradient
Algorithm (AdaGrad) and Root Mean Square Propagation (RMSProp). Adam has been
especially useful when training deep learning models on non-convex loss surfaces, as is

common with RNNs (Kingma & Ba, 2014).
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The initial learning rate was 0.001 and it was left to decay automatically depending on
validation performance. The loss function was chosen as the Mean Squared Error (MSE)
because it is directly related to the main model evaluation measure in regression tasks
prediction accuracy (Brownlee, 2018). The model was trained on up to 100 epochs and a batch
size of 382; as these parameters have proven to achieve a decent balance between the speed of
convergence and model stability in financial time-series settings (Zhu et al., 2022).
EVALUATION METRICS

Quantitative measures of error combined with trend-based measures of performance were used
to assess the models. In particular, the quality of the numerical predictions was evaluated using
MSE and Root Mean Squared Error (RMSE). These statistics give a feel of how far the model
estimations are to the actual stock prices.

Besides that, the Directional Accuracy (DA) was also computed to check how well the
model performs in terms of correctly capturing the direction of market movement (i.e., whether
the stock price will increase or decrease). Directional Accuracy is especially applicable to live
trading practices, as in practice the direction of movement is often more important than the
exact value forecast (Fischer et al., 2023). DA was calculated as the probability of correctly
predicting the sign of the price change by the model.

Lastly, predicted versus actual stock prices were visually analysed to give qualitative
information about the behaviour of the model in various market conditions such as during high
volatility and trending markets.

EXPERIMENTAL SETUP AND COMPUTATIONAL ENVIRONMENT

All experiments were carried out on a high-performance computing environment that consisted
of an NVIDIA RTX 3080 GPU, 64 GB RAM, and an Intel i9 processor, which provides an
efficient training of deep learning models. Python 3.9 with TensorFlow 2.9 and Keras 2.9,
NumPy, Pandas, and Matplotlib were used as a software environment.

The hyperparameters, which include look-back window size, the number of units, the
dropout rate, learning rate, and batch size, were optimized using extensive grid search and
cross-validation on the training set to achieve the best model performance.

RESULTS
TRAINING DYNAMICS AND MODEL CONVERGENCE
Model convergence and loss stability were the measures of the initial stage of model evaluation

on the three architecture models, namely, LSTM, GRU, and Simple RNN.
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Figure 1, Figure 2, and Figure 3, together with Table 1, Table 2, and Table 3, show the

training and validation loss (MSE) of the three models over epochs.

TABLE 1. TRAINING AND VALIDATION LOSS ACROSS EPOCHS (LSTM MODEL)

Epoch Training Loss (MSE) Validation Loss (MSE)
1 0.01253 0.01467
5 0.00674 0.00892
10 0.00421 0.00581
15 0.00295 0.00412
20 0.00213 0.0084:5
25 0.00167 0.00287
30 0.00128 0.00253
35 0.00109 0.00241
40 0.00102 0.00238
45 0.00097 0.00236
50 0.00096 0.00235 (Early Stopped)
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FIGURE 1 - LSTM TRAINING AND VALIDATION LOSS

Figure 1: LSTM Training vs Validation Loss
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The LSTM model showed a quick convergence, the training loss decreased monotonically,
starting at 0.01253 to 0.00097 in 50 epochs. The loss in validation then proceeded in the same
manner, leveling off at 0.00235 beyond epoch 45, where Early Stopping was incentivized (Table
1, Figure 1). The gradual decay and the lack of a significant gap between the training and
validation curves indicate great generalization and stability of the LSTM network.

TABLE 2. TRAINING AND VALIDATION LOSS ACROSS EPOCHS (GRU MODEL)

Epoch Training Loss (MSE) Validation Loss (MSE)
1 0.01321 0.01502
5 0.00704 0.00938
10 0.00468 0.00625
15 0.00329 0.00485
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20 0.00239 0.00394
25 0.00192 0.00322
30 0.00154 0.00293
35 0.00125 0.00275
40 0.00112 0.00269
45 0.00103 0.00266
50 0.00102 0.00265 (Early Stopped)

FIGURE 2 - GRU TRAINING AND VALIDATION LOSS

Figure 2: GRU Training vs Validation Loss
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Likewise, the GRU model also converged nicely with the final training and validation loss of

0.00103 and 0.00265 respectively (Table 2, Figure 2). Though its convergence was a bit slower
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than that of LSTM, the model showed high consistency and low chances of over-fitting as
evidenced by the parallel nature of the two curves.

TABLE 3. TRAINING AND VALIDATION LOSS ACROSS EPOCHS (SIMPLE RNN

MODEL)

Epoch Training Loss (MSE) Validation Loss (MSE)
1 0.01486 0.01675

5 0.00821 0.01045

10 0.00574 0.00768

15 0.00413 0.00651

20 0.00319 0.00588

25 0.00278 0.00554

30 0.00241 0.00541

35 0.00227 0.00537

40 0.00218 0.00535

45 0.00213 0.00534

50 0.00212 0.00534 (Early Stopped)
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FIGURE 3 - SIMPLE RNN TRAINING AND VALIDATION

Figure 3: Simple RNN Training vs Validation Loss
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Conversely, the Simple RNN took longer to converge and had a greater final loss value
(training loss 0.00213, validation loss 0.00534) as highlighted in Table 3 and Figure 3. In
addition, the validation curve reached a plateau soon which means the model was not able to
learn the long term dependencies in stock price data, which is a weakness of vanilla RNN
architectures (Bengio et al., 1994).

OVERALL MODEL PERFORMANCE ON TEST DATA

A detailed comparison of the models on critical performance metrics as assessed on the test set
is available in Table 4 and Figure 4 (Radar Chart). The LSTM model performed better on all
the metrics compared to GRU and Simple RNN with an MSE of 0.00097, RMSE of 0.0311,
MAE of 0.0239, and MAPE of 1.95%. It also had the highest Directional Accuracy (DA) of

72.4%.
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TABLE 4. FINAL TEST SET PERFORMANCE METRICS (ALL MODELS)

Model MSE RMSE MAE MAPE (%) Directional Accuracy R?
(%) Score
Simple RNN 0.00158 0.0398 0.0312 2.68 61.0 0.78
LSTM 0.00097 0.0311 0.0239 1.95 72.% 0.88
GRU 0.00103 0.0320 0.0247 2.02 71.1 0.87

FIGURE 4 - FINAL TEST SET PERFORMANCE METRICS

Figure 4: Radar Chart of Final Test Metrics
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2.5
2.0
1.5
1.0
0.5
MAE MSE

—— Simple RNN
— | STM
= GRU

MAPE

GRU was quite similar to LSTM in terms of test MSE of 0.00103, RMSE of 0.0320, and DA of

71.1% making it a valid option as a computationally less expensive model. The Simple RNN fell
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short, though, with an MSE of 0.00158 and DA of only 61.0%, confirming the insufficiency of
this architecture to the complex time-series prediction in the stock market.

Visual representation of the results in Figure 4 clearly demonstrates the superiority of the
LSTM model in terms of all four fundamental metrics. The radar chart compactness of the
LSTM design proves the existence of a well-balanced profile of performance, outperforming in
predictive accuracy and directional forecasting ability.

DIRECTIONAL ACCURACY ACROSS MARKET REGIMES

It is in times of market volatility that the strength of a forecasting model is commonly put to
test. Table 5 and Figure 5 investigate this point further by comparing Directional Accuracy
between volatile and stable market regimes.

TABLE 5. DIRECTIONAL ACCURACY BY MARKET REGIME (VOLATILE VS.

STABLE PERIODS)

Model Volatile Period DA (%) Stable Period DA (%)
Simple RNN 54.3 64.9

LSTM 69.1 74.8

GRU 68.4 73.6
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FIGURE 5 - DIRECTIONAL ACCURACY BY MARKET REGIME

Figure 5: Directional Accuracy by Market Regime
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As revealed, the LSTM model exhibited high DA of 69.1% in volatile market conditions and
74.8% in stable market conditions, which indicated that the model could adjust itself according
to the varying market behaviors. The GRU model also showed good results, with DA of 68.4
percent and 73.6 percent respectively. In comparison, the Simple RNN performed poorly in
volatile conditions, with a DA of 54.3 percent, slightly above chance.

This distinction is also confirmed visually in Figure 5: whereas LSTM and GRU both
display strongly positive bars regardless of regime, the Simple RNN’s collapse during volatile
regimes serves to emphasize its inability to recover quick market movements.

ERROR DISTRIBUTION ANALYSIS
A high resolution on the details of forecast errors is very important when judging model
reliability. The Forecast Error Distribution of the LSTM model which has shown the best

overall performance is represented in Table 6 and Figure 6.

TABLE 6. FORECAST ERROR DISTRIBUTION (LSTM MODEL)

Error Range (%) % of Predictions Falling in Range

0% — 1% 51.4
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1% — 2% 29.7
2% — 3% 11.2
3% — 4% 4.9
> 4% 2.8

FIGURE 6 - FORECAST ERROR DISTRIBUTION (LSTM MODEL)
Figure 6: Forecast Error Distribution (LSTM Model)
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Particularly, 51.4 percent of predictions made by LSTM were in the 0%-1 percent error margin,
with another 29.7 percent in 1 percent-2 percent, indicating that more than 81 percent of
predictions were very accurate. The proportion of forecasts with an error greater than 4% was
only 2.8%, which evidences the model stability even in the harsh market situations. Figure 6
also shows that large prediction errors were not common, which was further evidence of the
stability of the LSTM method.

SAMPLE DAILY PREDICTION QUALITY

The specific examples of LSTM model predictions on the individual trading days are presented
in Table 7 and Figure 7. The forecasted and the real closing prices of six sample dates in

January 2022 are presented in a parallel manner.
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TABLE 7. SAMPLE DAILY PREDICTIONS VS. ACTUAL PRICES (LSTM MODEL)

Date Actual Close Predicted Close Absolute Direction
Price Price Error Correct?

2022-01- 4766.18 4764.12 2.06 Yes

03

2022-01- 4700.58 4705.27 4.69 Yes

04

2022-01- 4693.35 4690.02 3.33 Yes

05

2022-01- 4696.05 4702.34 6.29 No

06

2022-01- 4677.08 4675.21 1.82 Yes

07

2022-01- 4670.29 4668.48 1.81 Yes

10
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FIGURE 7 - SAMPLE DAILY PREDICTIONS VS ACTUAL PRICES (LSTM)

Figure 7: Sample Daily Predictions vs Actual Prices (LSTM)
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By visual observation of Figure 7, it can be seen that the LSTM model closely follows the true
stock price movement without much delay. Although minor discrepancies (less than 5 points)
existed, the model successfully predicted the overall price movement direction in 5 out of 6
cases, which has high practical usefulness due to potential trading strategies usage.

The absolute errors in Table 7 tended to be small with the highest difference of 6.29
points on January 6 - a day where the market had an unexpected reversal. The model quickly
adjusted its forecasts in later days despite this challenge as a testament to its adaptive learning
ability.

COMPUTATIONAL EFFICIENCY

Computational efficiency is another requirement necessary to deploy deep learning models in
practice. The average training time per epoch on each model is provided in Table 8 and Figure
8.

Not surprisingly, the LSTM model with a more complicated gating mechanism took the
longest epoch time (6.87 seconds), whereas GRU took 5.94 seconds. The Simple RNN was the
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quickest, at 3.25 seconds per epoch, however, its worse performance highly eliminates that
benefit.
TABLE 8. COMPUTATIONAL EFFICIENCY — TRAINING TIME PER EPOCH

Model Average Epoch Time (seconds) Total Training Time (minutes)
Simple RNN 3.25 2.71
LSTM 6.87 5.72
GRU 5.94 4.94

FIGURE 8 - COMPUTATIONAL EFFICIENCY - TRAINING TIME PER EPOCH

Figure 8: Computational Efficiency - Training Time per Epoch

Average Epoch Time (seconds)

Simple RNN LSTM GRU

The trade-oftf between model accuracy and training time is evident in figure 8. The LSTM is
more costly in computation but its ability to forecast is more accurate which would be worth
the time investment especially in high-risk financial situations where the quality of the

prediction is most relevant.
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SUMMARY OF FINDINGS

Cumulatively, the experiments clearly indicate that the state-of-the-art RNN architectures,
namely LSTM, bring significant benefits to the table in comparison with Simple RNN when
applied to stock market prediction.

The LSTM model outperformed in predictive accuracy, directional forecasting, stability
of errors and flexibility across market regimes with reasonably acceptable computational
tootprint.

GRU model offered a very competitive alternative that trained quicker and was almost as
accurate.

The Simple RNN, in its turn, did not compete with the performance of these gated
architectures, which validates the idea that more intricate recurrent units are necessary to
capture the intricate temporal dynamics of stock market data.

DISCUSSION

This experiment shows that the Recurrent Neural Network (RNN) architecture containing
gating units Recurrent Neural Network (RNN) structures containing gating units, such as
Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) networks, are
much more effective than the Simple RNN models at stock market trend prediction. This
finding is in line with recent strands of literature that have called upon the use of deep learning
methods on financial time-series (Li et al., 2020; Zhang & Chen, 2021).

The key findings of the work are: the high-quality prediction of the LSTM model
notonly in the numerical (MSE, RMSE) but also in the directional prediction capacity. This is
because the LSTM cells are designed with input, output and forget gates, and they allow the
network to decide what to forget or remember between time steps (Gers et al., 2003). Such
memory retention is important in stock market prediction when the short term volatility and
long term trends are not linearly related to each other (Arias et al., 2021). In the former
investigation by Sezer et al. (2020), it was also identified that the LSTM-based models
presented a better ability to learn these complex patterns compared to the traditional
approaches.

GRU model showed the same outcome as the LSTM with a minor reduction in the
accuracy and increased computation efficiency. It aligns with previous observation made by Yin
et al. (2021) that GRUs offer a reasonable accuracy-speed trade-off, which is reasonably

enticing in the high-frequency trading context where real-time predictions are a precondition.
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GRUs contain fewer parameters and thus imply faster convergence, which can be advantageous
in the scenario of training on large datasets (Zhang et al., 2018).

Simple RNN, in its turn, performed much worse. It falls in line with previous results by
Bengio et al. (1994), and Pascanu et al. (2013) that noted the impossibility of Simple RNNs to
efficiently learn long-range dependencies because of the vanishing gradient problem. Simple
RNNs cannot be trained with optimized training and regularization to retain important market
information in long sequences, which is a large prerequisite to success in financial forecasting
(Cao et al., 2020).

One of the most interesting results of the present research is the strength of LSTM and
GRU models irrespective of the market regime. Table 5 and Figure 5 indicate that the two
models had high directional accuracy in volatile and stable periods. That is critical in practical
trading, where the market environment often changes because of geopolitical occasions,
economic releases, and market mood (Shen et al., 2020). The necessity of the models capable of
adapting to such non-stationary dynamics was also stated in the prior research by Liu et al.
(2019).

The analysis of error distribution also supports the fact of the practical reliability of
LSTM-based forecasting. More than 81 percent of LSTM forecasts were within 2 percent error,
which aligns with the results that Bao et al. (2021) reported the same stability in their deep
learning-based financial forecasting models. The infrequent high error rate (>4%) increases the
model reliability in real-world trading uses (Chen & Hao, 2021).

Furthermore, the sample daily predictions in Table 7 and Figure 7 also reveal that the
LSTM model is capable of not only predicting price levels effectively but also trend direction -
which is of paramount importance when utilizing algorithmic trading in the decision-making
process (Ghosh & Sanyal, 2022). One of the most tradable metrics is directional accuracy, which
is nevertheless omitted in purely statistical analysis (Zhang & Aggarwal, 2020).

Computational efficiency of the models is also another key point. Although LSTM is
more expensive in terms of training time per epoch, its forecasting advantages compensate the
former, especially when batch forecasting is involved (Krauss et al, 2017). Its identical
performance and quicker convergence rate make the GRU a potential prospect in any
environment where low latency is a concern (Huang et al., 2022).

These findings, when considered alongside the literature, add to the patterns LSTMs and other
torms of deep learning are replacing traditional statistical models (like ARIMA and GARCH)
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when it comes to stock market prediction (Fischer & Krauss, 2018; Cavalcante et al., 2016). But
the use of deep learning models is not limitless. Overfitting is one of the issues that may arise,
especially during training with small amounts of financial data (Kim & Won, 2018). Even
though this study used early stopping and dropout regularization to alleviate this risk, more
research into the advanced regularization methods, like Bayesian deep learning (Gal &
Ghahramani, 2016) might help to make the models more robust.

Another problem is interpretability of RNN-based models. Financial institutions might
require an explanation of model decisions especially in regulated environments (Guidotti et al.,
2019). An encouraging step in this direction to satisfy this requirement is the attention
mechanisms (Qin et al., 2017) and post-hoc explainability widgets like SHAP values (Lundberg
& Lee, 2017). It may be possible to integrate such mechanisms in LSTM and GRU models in
the future to approach improved transparency without a drop in performance.

The second emerging trend is multi-modal data - combing historical prices with news
sentiment, macroeconomic indicators, and even social media indicators (Xu et al., 2020). It has
been demonstrated by Bollen et al. (2011) and Ding et al. (2015) that the sentiment data can
significantly enhance the effectiveness of stock forecasting models. An interesting future
research direction is how to integrate these data streams to RNN architectures.

Lastly, the issue of whether the model can be generalized across markets and asset
classes is open. Although the present study considered the S&P 500, it may be possible to
turther learn by performing the same analysis on emerging markets or cryptocurrencies, which
teature distinct volatility and correlation structures (Mallqui & Fernandes, 2019). Better cross-
market adaptability might be facilitated with the aid of transfer learning strategies (Tsai &
Chen, 2021).

Finally, this result leads to the conclusion that the investigations with deep RNN
structures in stock market prediction should be pursued further. The LSTM and GRU models'
superiority in capturing rich temporal dynamics as well as their robustness across market
regimes makes them a useful tool in academic research and real-life financial applications. But
issues of interpretability, overfitting and multi-source data integration persist, promising fertile
grounds of future research.
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